
Static information flow analysis

SOS, Master Recherche Science Informatique, U. Rennes

Thomas Jensen

(slides by David Pichardie, Delphine Demange, Thomas Jensen)



Information flow type system Introduction

Secure information flow

Overall goal : prevent secret (confidential, private,. . . ) data to leak to an
attacker.

Technique : follow the flow of secret data during execution
I Statically : analyse (prove) the security of the program before execution.
I Dynamically : guarantee the security of an execution, using a security

monitor.

In this lecture :
I what does it mean for a program to leak a secret ?
I different forms of leakage,
I a type system for proving information flow security,
I how to de-classify information securely.

SOS Static information flow analysis 2 / 35



Information flow type system Introduction

Non-interference

”Low-security behavior of the program is not affected by any high-security
data.” Goguen & Meseguer 1982

H1 L

H′1 L′

High (H) = confidential Low (L) = public

SOS Static information flow analysis 3 / 35



Information flow type system Introduction

Non-interference
”Low-security behavior of the program is not affected by any high-security
data.” Goguen & Meseguer 1982

H1 L

H′1 L′

H2 L

H′2 L′

High (H) = confidential Low (L) = public

SOS Static information flow analysis 3 / 35



Information flow type system Introduction

Secure programs

The set of variables is partitioned into two disjoint sets :
I VH : high (or secret) variables
I VL : low (or public) variables

Intuitively 1, a program is secure (or non interferent) if the final values of low
variables do not depend on the initial values of the high variables.

Examples : are these programs secure or not?
1 h := l

2 l := h

3 if (h1>0) then {l := 1} else {l := 2}

4 while (h) do { l := l+1 }; l := 0

We distinguish between direct and indirect flows

1. This notion will be defined formally when presenting the semantics of the language.
SOS Static information flow analysis 4 / 35



Information flow type system Introduction

A lattice of security levels

Information flow can be defined for arbitrary lattices of security levels.
We consider here only two security levels (low and high).

L

H

We write v for the partial order and t for the least upper bound.

There is a flow of information from x to y if the value of the variable y
depends on the value of the variable x.

If x is of level kx and y of level ky, then the flow from x to y is
I secure if kx v ky

I illegal if kx @ ky

SOS Static information flow analysis 5 / 35



Information flow type system Introduction

Program syntax

While language with mixed arithmetic and boolean expressions.

Expr ::= n n ∈ Z
| x x ∈ VH ]VL
| Expr o Expr o ∈ {+,−,×, . . .}
| Expr c Expr c ∈ {=,,, <,≤, . . .}
| Expr b Expr b ∈ {and, or}

bop ∈ o ∪ c ∪ b
Stm ::= x := Expr

| if Expr then Stm else Stm
| while Expr do Stm
| Stm ; Stm

The set of variables is partitioned into two disjoint sets :
I VH : high (or secret) variables
I VL : low (or public) variables

SOS Static information flow analysis 6 / 35



A simple information flow type system

A simple information flow type system (1/3)

We will present a simple information flow type system 2 and prove it enforces
a semantic non-interference property on well-typed programs.

Typing judgment for expressions : e ∈ Expr, τ ∈ {L,H}

` e : τ

Meaning : the expression e depends only on variables of level τ or lower.

Typing rules : (τx stands for the ` such that x ∈ V`)

CONST
` n : L

VAR
` x : τx

BINOP
` e1 : τ ` e2 : τ
` e1 bop e2 : τ

EXP-SUBTYP
` e : τ1 τ1 v τ2

` e : τ2

2. equivalent to D. Volpano and G. Smith, A Type-Based Approach to Program Security, Theory and
Practice of Software Development, 1997.

SOS Static information flow analysis 7 / 35



A simple information flow type system

Example

Assuming h ∈ VH, a type derivation for ` h + 1 : H

BINOP

VAR
h ∈ VH

` h : H
EXP-SUBTYP

CONST
` 1 : L L v H

` 1 : H
` h + 1 : H

SOS Static information flow analysis 8 / 35



A simple information flow type system

A simple information flow type system (2/3)
Typing judgment for statements : S ∈ Stm, τpc ∈ {L,H}

τpc ` S

Intuition :
I τpc, the program-counter label, tracks the dependencies of the current

program point (to forbid indirect flows).
I the variables modified by statement S are of level τpc or higher.

Ensures : well-typed programs have no illicit flows.

Typing rules : (τx = ` means x ∈ V`)

ASSIGN
` e : τ τ t τpc v τx

τpc ` x := e SEQ
τpc ` S1 τpc ` S2

τpc ` S1 ; S2

IF
` e : τ τ t τpc ` Si i = 1, 2

τpc ` if e then S1 else S2
WHILE

` e : τ τ t τpc ` S

τpc ` while e do S

SOS Static information flow analysis 9 / 35



A simple information flow type system

A simple information flow type system (3/3)

Sub-typing rule :

STM-SUBTYP
H ` S
L ` S

The subtyping relation on statements is contravariant !

Intuition : typing S under a high context guarantees that all
assignments are to variables of high level, so OK (but not
precise) to say that it assigns to variables of high or low levels.

More intuition : typing S under a high context is more difficult
(because it limits direct and indirect flows), so S is shown to be
”more secure”.

SOS Static information flow analysis 10 / 35



A simple information flow type system

Exercise

Exercise (Typing derivations)
Assuming l ∈ VL and h ∈ VH, try to type the following statements (give a type
derivation, if possible) :
I if (l) then h := l else l := 0
I if (h) then h := l else l := 0
I if (h) then l := 0 else l := 0

SOS Static information flow analysis 11 / 35



A simple information flow type system Type soundness

Type soundness

We want to prove that the type system is indeed ensuring non-interference.

To do so :
I define the semantics of the language
I define the semantic property we want to prove (non-interferent program)
I prove that all well-typed programs satisfy the property

SOS Static information flow analysis 12 / 35



A simple information flow type system Type soundness

A natural semantics

State = Var→ Z
~·� ∈ Expr→ State→ Z (semantics of expressions)

(·, ·) ⇓ · ⊆ (Stm × State) × State (semantics of statements)

~n�s = N~n�
~x�s = s(x)

~e1 + e2�s = ~e1�s + ~e2�s
· · ·

(x := e, s) ⇓ s[x 7→ ~e�s]

(S1, s) ⇓ s′ (S2, s′) ⇓ s′′

(S1; S2, s) ⇓ s′′

(S1, s) ⇓ s′ ~e�s = 1

(if e then S1 else S2, s) ⇓ s′
(S2, s) ⇓ s′ ~e�s = 0

(if e then S1 else S2, s) ⇓ s′

(S, s) ⇓ s′ (while e do S, s′) ⇓ s′′ ~e�s = 1

(while e do S, s) ⇓ s′′
~e�s = 0

(while e do S, s) ⇓ s
SOS Static information flow analysis 13 / 35



A simple information flow type system Type soundness

The observational power of an attacker

Here, we will consider that the attacker only sees low variables before and
after executions.

We model his observational power with an equivalence relation between states.

∼ ⊆ State × State

s1 ∼ s2 iff ∀x ∈ VL, s1(x) = s2(x)

Intuition : the attacker cannot distinguish between equivalent states.

NB : This relation can be extended to an arbitrary security lattice.

SOS Static information flow analysis 14 / 35



A simple information flow type system Type soundness

Non-interference

”Low-security behavior of the program is not affected by any high-security
data.” Goguen & Meseguer 1982

H1 L

H′1 L′

High (H) = confidential Low (L) = public

∀s1, s2, s′1, s
′

2, s1 ∼ s2 ∧ (P, s1) ⇓ s′1 ∧ (P, s2) ⇓ s′2 =⇒ s′1 ∼ s′2

SOS Static information flow analysis 15 / 35



A simple information flow type system Type soundness

Non-interference
”Low-security behavior of the program is not affected by any high-security
data.” Goguen & Meseguer 1982

H1 L

H′1 L′

H2 L

H′2 L′

High (H) = confidential Low (L) = public

∀s1, s2, s′1, s
′

2, s1 ∼ s2 ∧ (P, s1) ⇓ s′1 ∧ (P, s2) ⇓ s′2 =⇒ s′1 ∼ s′2

SOS Static information flow analysis 15 / 35



A simple information flow type system Type soundness

Non-interference

”Low-security behavior of the program is not affected by any high-security
data.” Goguen & Meseguer 1982

H1 L

H′1 L′

H2 L

H′2 L′

∼

∼

High (H) = confidential Low (L) = public

∀s1, s2, s′1, s
′

2, s1 ∼ s2 ∧ (P, s1) ⇓ s′1 ∧ (P, s2) ⇓ s′2 =⇒ s′1 ∼ s′2

SOS Static information flow analysis 15 / 35



A simple information flow type system Type soundness

Type soundness

Definition (Non-interference)
A statement S is said non interferent iff for all s1, s2 such that s1 ∼ s2,

(S, s1) ⇓ s′1
(S, s2) ⇓ s′2

}
implies s′1 ∼ s′2

Theorem (Type soundness)
Every typable statement (i.e. such that ∃τpc , τpc ` S) is non-interferent.

Exercise
Prove this theorem.

SOS Static information flow analysis 16 / 35



A simple information flow type system Type soundness

Type soundness proof : step 1

We need a new set of typing rules.

CONST’
`s n : τ VAR’

τx v τ′

`s x : τ′
BINOP’

`s e1 : τ `s e2 : τ

`s e1 bop e2 : τ

ASSIGN’
`s e : τx τ′ v τx

τ′ `s x := e
SEQ’

τ `s S1 τ `s S2

τ `s S1 ; S2

IF’
`s e : τ τ `s S1 τ `s S2 τ′ v τ

τ′ `s if e then S1 else S2

WHILE’
`s e : τ τ `s S τ′ v τ

τ′ `s while e do S

This type system is syntax-directed : at most one rule can be used for each
program construct (expression or statement).

SOS Static information flow analysis 17 / 35



A simple information flow type system Type soundness

Type soundness proof : step 1
Lemma (Sub-typing property)
For all e, τ, τ′, `s e : τ and τ v τ′ implies `s e : τ′.
For all S, τ, τ′, τ′ `s S and τ v τ′ implies τ `s S.

Proof. By induction on the typing judgment.

The new system is equivalent to the previous one.

Lemma
For all e, τ, ` e : τ implies `s e : τ.
For all S, τ, τ ` S implies τ `s S.

Proof. By induction on the typing judgment.

Lemma
For all e, τ, `s e : τ implies ` e : τ.
For all S, τ, τ `s S implies τ ` S.

Proof. By induction on the typing judgment.
SOS Static information flow analysis 18 / 35



A simple information flow type system Type soundness

Type soundness proof : step 2

Lemma (Low expressions)
For all e ∈ Expr, if `s e : L, then for all s1, s2 ∈ State, s1 ∼ s2 implies ~e�s1 = ~e�s2.

Proof. By induction on type derivation for e.

Lemma (Confinement of high statements)
For all S ∈ Stm, and s, s′ ∈ State, if (S, s) ⇓ s′ and H `s S, then s ∼ s′.

Proof. By induction on the judgment (S, s) ⇓ s′.

Theorem (Type soundness)
For all S ∈ Stm, s1, s2, s′1, s

′

2 ∈ State, τpc ∈ {L,H}, if s1 ∼ s2, (S, s1) ⇓ s′1, (S, s2) ⇓ s′2
and τpc `s S then s′1 ∼ s′2.

Proof. By induction on the judgment (S, s1) ⇓ s′1. Be careful with the while case.

SOS Static information flow analysis 19 / 35



A simple information flow type system Type soundness

A few remarks on the type system

I The attacker may have additional observation power (timing, power
consumption)

I Type checking is computable but non-interference is not

Exercise (Type system incompleteness)
Give an example of non-interferent program that is not typable.

Exercise (IFC Challenges)
Solve as many IFC challenges as you can on :
http://ifc-challenge.appspot.com/

For each of the challenges :
I give a valid type derivation for your leaky program
I indicate whether (and if so, why) the type system is not restrictive enough
I elaborate on a possible solution to disallow your attack

SOS Static information flow analysis 20 / 35

http://ifc-challenge.appspot.com/


Variations on the theme of observation



Various kinds of observation

Observational power of attacker

We have ignored some information channels :
I timing channels

if h>0 then skip else {<huge, non-interfering computation > }

measuring the run-time of this program may reveal secret informations.
See lecture on side-channels analysis later in the course.

I termination channels

while h>0 do skip

I power consumption (differential power attacks)

SOS Static information flow analysis 22 / 35



Various kinds of observation

Covert channels from power consumption
A bit more challenging : power consumption per processor clock cycle

Figure – Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
CRYPTO ’99.

Executions are identical except for the jump instruction at cycle 6.SOS Static information flow analysis 23 / 35



Various kinds of observation

JavaScript channels

In JavaScript, records are extensible.
Furthermore, the presence of fields can be tested.

myway:InfoFlow demange$ node

> var o = {}

> o.secret === undefined

true

> o.secret = 1

> o.secret === undefined

false

The structure of data can be used to transmit information !

SOS Static information flow analysis 24 / 35



Various kinds of observation

Scheduler-based channels

Consider two threads

T1: h := 0; l := h

and

T2: h := secret

Separately, each thread is safe (T1 erases h).
Executed concurrently, they may leak the secret.
Implicit flows can also arise :

T1: (if h > 0 then sleep(100) else skip); l := 1

and

T2: sleep(50); l := 0

Most schedulers will leak h into l

Making executions atomic can remedy this — but is expensive.

SOS Static information flow analysis 25 / 35



Declassification



Declassification of information

Giving (some) information away

Code should not leak sensitive information.

Non-interference is sometimes too strong a property.

Some applications intentionally leak some confidential information :

I password checking always reveals some secret
I statistics
I . . .

Need to give away some information.

Need for controlled information release or declassification

SOS Static information flow analysis 27 / 35



Declassification of information

Declassification

Distinguish several dimensions 3 of declassification :

I what data can be declassified? (e.g., the average of a salary data base)
I who can declassify? (and who can influence the decisions of

declassification).
I when can data be declassified (e.g., release highest bid in an auction with

secret bids, non-interference “until”) ?
I where can data be declassified (e.g., after passing a down-grader)?

3. See Sabelfeld and Sands : Dimensions of Declassification, J. Comp Security.
SOS Static information flow analysis 28 / 35



Declassification of information

Controlling information release

Declassification might compromise confidentiality.

Ensure that secrets are not leaked via release mechanisms.

Information release violates non-interference !

⇒ we cannot rely on previous type system to ensure security.

What security guarantees for programs with declassification?

SOS Static information flow analysis 29 / 35



Declassification of information

An operator for declassification

We introduce a binary operator declassify(exp, lvl) that takes as arguments

I an expression exp
I a security level lvl such as high, low,. . .

Intention : the information computed by exp can be declassified to the level lvl.

For example, one would like the type system to accept 4

avg := declassify((h_1 + ... + h_n)/n, low)

Rejected by non-interference.

But how to ensure that we are not declassifying more than intended?

4. hi are secrets, avg, n are low variables
SOS Static information flow analysis 30 / 35



Declassification of information

Delimited release
Principle : Only release declassified data and no further information
Intuition : Expression exp can be declassified in statement S if making the

value of exp visible does not reveal information about secret
input.

Formally : All environments that are indistinguishable through exp are
indistinguishable through S.

Definition : exp is safe to declassify in S if

s1 ∼ s2 and ~exp�s1 = ~exp�s2 and (S, s1) ⇓ s′1 and (S, s2) ⇓ s′2
implies

s′1 ∼ s′2

Exercise (Security property)
Are non-interferent programs secure wrt. delimited release? If yes, prove it. If
not, give a counter example.

SOS Static information flow analysis 31 / 35



Declassification of information

Examples

Exercise
Are the following programs obeying delimited release?
I avg := declassify((h_1 + ... + h_n)/n, low)

I tmp := h_1; h_1 := h_2; ... h_n := tmp;
avg := declassify((h_1 + ... + h_n)/n, low)

I h_2:=h_1;...; h_n:=h_1;
avg:=declassify((h_1+...+h_n)/n,low);

Example 1 : accepted. Why?
Example 2 : accepted. Why?
Example 3 : rejected. Why?
To see this, set

s1 = [h1 = 2, h2 = 4, avg = 0] and s2 = [h1 = 4, h2 = 2, avg = 0]

Then declassify((h_1 + ... + h_n)/n, low) has value 3 in s1 and s2 but leads to
final states where observable variable avg has different values.

SOS Static information flow analysis 32 / 35



Declassification of information

Examples

Exercise
Are the following programs obeying delimited release?
I avg := declassify((h_1 + ... + h_n)/n, low)

I tmp := h_1; h_1 := h_2; ... h_n := tmp;
avg := declassify((h_1 + ... + h_n)/n, low)

I h_2:=h_1;...; h_n:=h_1;
avg:=declassify((h_1+...+h_n)/n,low);

Example 1 : accepted. Why?

Example 2 : accepted. Why?
Example 3 : rejected. Why?
To see this, set

s1 = [h1 = 2, h2 = 4, avg = 0] and s2 = [h1 = 4, h2 = 2, avg = 0]

Then declassify((h_1 + ... + h_n)/n, low) has value 3 in s1 and s2 but leads to
final states where observable variable avg has different values.

SOS Static information flow analysis 32 / 35



Declassification of information

Examples

Exercise
Are the following programs obeying delimited release?
I avg := declassify((h_1 + ... + h_n)/n, low)

I tmp := h_1; h_1 := h_2; ... h_n := tmp;
avg := declassify((h_1 + ... + h_n)/n, low)

I h_2:=h_1;...; h_n:=h_1;
avg:=declassify((h_1+...+h_n)/n,low);

Example 1 : accepted. Why?
Example 2 : accepted. Why?

Example 3 : rejected. Why?
To see this, set

s1 = [h1 = 2, h2 = 4, avg = 0] and s2 = [h1 = 4, h2 = 2, avg = 0]

Then declassify((h_1 + ... + h_n)/n, low) has value 3 in s1 and s2 but leads to
final states where observable variable avg has different values.

SOS Static information flow analysis 32 / 35



Declassification of information

Examples

Exercise
Are the following programs obeying delimited release?
I avg := declassify((h_1 + ... + h_n)/n, low)

I tmp := h_1; h_1 := h_2; ... h_n := tmp;
avg := declassify((h_1 + ... + h_n)/n, low)

I h_2:=h_1;...; h_n:=h_1;
avg:=declassify((h_1+...+h_n)/n,low);

Example 1 : accepted. Why?
Example 2 : accepted. Why?
Example 3 : rejected. Why?
To see this, set

s1 = [h1 = 2, h2 = 4, avg = 0] and s2 = [h1 = 4, h2 = 2, avg = 0]

Then declassify((h_1 + ... + h_n)/n, low) has value 3 in s1 and s2 but leads to
final states where observable variable avg has different values.

SOS Static information flow analysis 32 / 35



Declassification of information

Type system for declassification

Idea : prevent new information from flowing into variables used in
declassifying expressions

Intuition : exp should not contain high variables other than h in

h := exp ; ... ; declassify(h,low);

Type system

I ` e : l,D where l is a security level and D the variables used in declassified
expressions in e.

I τpc ` S : (U,D) where U are variables being updated in S and D variables
used in declassification operations in S.

I declassified variables may not be updated prior to declassification

SOS Static information flow analysis 33 / 35



Declassification of information

Type system for declassification

Typing rules (a selection)

EXP-DECLASS
` e : l′,D

` declassify(e, l) : l,Vars(e)

CMD-ASG
` e : l′,D l′ ∪ τpc v τx

τpc ` x := e : {x},D

CMD-SEQ
τpc ` S1 : U1,D1 τpc ` S2 : U2,D2 U1 ∩D2 = ∅

τpc ` S1; S2 : U1 ∪U2,D1 ∪D2

SOS Static information flow analysis 34 / 35



Declassification of information

References
I D. Volpano and G. Smith, A Type-Based Approach to Program Security.

Theory and Practice of Software Development, 1997.
I A. Sabelfeld and A. C. Myers. Language-Based Information-Flow

Security. IEEE Journal on selected areas in communications. Vol. 21, NO.
1, 2003.

I F. Pottier and V. Simonet. Information flow inference for ML. POPL 2002.
I J. Agat, Transforming out timing leaks. POPL 2000.
I B. Coppens, I. Verbauwhede, K. De Bosschere, and B. De Sutter. Practical

Mitigations for Timing-Based Side-Channel Attacks on Modern x86
Processors. In Proceedings of the 2009 30th IEEE Symposium on Security
and Privacy (SP ’09). 2009

I A. Sabelfeld, A. C. Myers. A Model for Delimited Information Release.
Software Security - Theories and Systems. LNCS 2004.

I A. C. Myers, A. Sabelfeld, and S. Zdancewic. 2006. Enforcing robust
declassification and qualified robustness. J. Comput. Secur. 14, 2 2006,
157-196.

SOS Static information flow analysis 35 / 35


	Information flow type system
	Introduction

	A simple information flow type system
	Type soundness

	Various kinds of observation
	Declassification of information

