
Abstract Interpretation

SOS, Master Recherche Science Informatique, U. Rennes

Thomas Jensen

(slides by David Pichardie, Thomas Jensen)

Introduction

Static program analysis

The goals of static program analysis
I to prove properties about the run-time behaviour of a program
I in a fully automatic way
I without actually executing this program

Abstract interpretation : a theory of semantic approximation, which unifies a
large variety of static analyses.

Abstract interpretation
I formalises the approximated analysis of programs,
I allows to compare the relative precision of analyses,
I facilitates the design of sophisticated analyses.

SOS Abstract Interpretation 2 / 78

Introduction

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of states.

Collecting semantics
I A state property is a subset in P(Z2)

of (x, y) values.
I When a point is reached for a second

time we make a union with the
previous property.

I We ”execute” the program until
stability
I It may take an infinite number of

steps...
I But the limit always exists

(explained later)

x = 0; y = 0;

{(0, 0), (1, 0), (1, 2), . . . }
while (x<6) {

if (?) {

{(0, 0), (1, 0), (1, 2), . . . }
y = y+2;

{(0, 2), (1, 2), (1, 4), . . . }
};

{(0, 0), (0, 2), (1, 0), (1, 2), (1, 4), . . . }
x = x+1;

{(1, 0), (1, 2), (2, 0), (2, 2), (2, 4), . . . }
}

{(6, 0), (6, 2), (6, 4), (6, 6), . . .}

SOS Abstract Interpretation 3 / 78

Introduction

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of states.

Approximation
I The set of manipulated properties

may be restricted to ensure
computability of the semantics.
Example : sign of variables

P ::= x C 0 ∧ y C 0

C ::= < | 6 | = | > | >

I To stay in the domain of selected
properties, we over-approximate the
concrete properties.

x = 0; y = 0;

x > 0 ∧ y > 0
while (x<6) {

if (?) {

x > 0 ∧ y > 0
y = y+2;

x > 0 ∧ y > 0
};

x > 0 ∧ y > 0
x = x+1;

x > 0 ∧ y > 0
}

x > 0 ∧ y > 0

SOS Abstract Interpretation 3 / 78

Introduction

Another example : the interval analysis
For each point k and integer variable x, we infer an interval to which x must belong.

Example : insertion sort, array access verification (buffer overflow)

assume(T.length=100); i=1;

{i ∈ [1, 100]}
while (i<T.length) {

{i ∈ [1, 99]}
p = T[i]; j = i-1;

{i ∈ [1, 99], j ∈ [−1, 98]}
while (0<=j and T[j]>p) {

{i ∈ [1, 99], j ∈ [0, 98]}
T[j+1]=T[j]; j = j-1;

{i ∈ [1, 99], j ∈ [−1, 97]}
};

{i ∈ [1, 99], j ∈ [−1, 98]}
T[j+1]=p; i = i+1;

{i ∈ [2, 100], j = [−1, 98]}
};

{i = 100}

SOS Abstract Interpretation 4 / 78

Introduction

Another example : the polyhedral analysis
For each point k, infer linear equality and inequality relationships among variables.

Example : insertion sort, array access verification (buffer overflow)

assume(T.length>=1); i=1;

{1 6 i 6 T.length}
while i<T.length {

{1 6 i 6 T.length − 1}
p = T[i]; j = i-1;

{1 6 i 6 T.length − 1 ∧ −1 6 j 6 i − 1}
while 0<=j and T[j]>p {

{1 6 i 6 T.length − 1 ∧ 0 6 j 6 i − 1}
T[j+1]=T[j]; j = j-1;

{1 6 i 6 T.length − 1 ∧ −1 6 j 6 i − 2}
};

{1 6 i 6 T.length − 1 ∧ −1 6 j 6 i − 1}
T[j+1]=p; i = i+1;

{2 6 i 6 T.length + 1 ∧ −1 6 j 6 i − 2}
};

{i = T.length}

SOS Abstract Interpretation 5 / 78

Introduction

Outline

1 Introduction

2 Control flow graph

3 Collecting semantics

4 Approximate analysis : an informal presentation

5 Abstraction by intervals

6 Widening and narrowing

7 Galois connections

8 Polyhedral abstract interpretation

9 References

SOS Abstract Interpretation 6 / 78

Control flow graph

Outline

1 Introduction

2 Control flow graph

3 Collecting semantics

4 Approximate analysis : an informal presentation

5 Abstraction by intervals

6 Widening and narrowing

7 Galois connections

8 Polyhedral abstract interpretation

9 References

SOS Abstract Interpretation 7 / 78

Control flow graph

While syntax

Exp ::= n n ∈ Z
| ?
| x x ∈ V
| Exp o Exp o ∈ {+,−,×}

test ::= Exp c Exp c ∈ {=,,,<,6}

| test and test
| test or test

Stm ::= l[x := Exp] l ∈ P
| l[skip]
| if l[test] { Stm } { Stm }

| while l[test] { Stm }

| Stm ; Stm
Prog ::= [Stm]end end ∈ P

P : set of program points V : set of program variables

SOS Abstract Interpretation 8 / 78

Control flow graph

While syntax : example

[0[x :=?];
if 1[x < 0] {

while 2[x < 0] {
3[x := x + 1];

};
4[y := x];

} else {
5[y := 0];

};]6

0

1

2

3
4

5

6

x :=?

x < 0

x < 0

x > 0

x :
=

x+
1

x > 0

y := x

y := 0

assume is left implicit

SOS Abstract Interpretation 9 / 78

Control flow graph

While semantics

Semantic domains

Env def
= V→ Z

State def
= P× Env

Semantics of expressions

A ~e� ρ ∈ P(Z), e ∈ Exp, ρ ∈ Env
A ~n� ρ = { n }

A ~?� ρ = Z
A ~x� ρ = { ρ(x) }, x ∈ V
A ~e1 o e2� ρ = { v1 o v2 | v1 ∈ A ~e1� ρ, v2 ∈ A ~e2� ρ }

o ∈ {+,−,×}

Remark : A ~·� ρ is non-deterministic because of the expression ?.

SOS Abstract Interpretation 10 / 78

Control flow graph

Semantics of tests

B ~t� ρ ∈ P(B), t ∈ test, ρ ∈ Env B = {tt,ff}

v1 ∈ A ~e1� ρ v2 ∈ A ~e2� ρ v1 c v2

tt ∈ B ~e1 c e2� ρ

v1 ∈ A ~e1� ρ v2 ∈ A ~e2� ρ ¬ (v1 c v2)

ff ∈ B ~e1 c e2� ρ

b1 ∈ B ~t1� ρ b2 ∈ B ~t2� ρ

b1 ∧B b2 ∈ B ~t1 and t2� ρ

b1 ∈ B ~t1� ρ b2 ∈ B ~t2� ρ

b1 ∨B b2 ∈ B ~t1 or t2� ρ

SOS Abstract Interpretation 11 / 78

Control flow graph

Structural Operational Semantics
Small-step semantics

v ∈ A[[a]]ρ
(l[x := a], ρ)⇒ ρ[x 7→ v] (l[skip], ρ)⇒ ρ

(S1, ρ)⇒ ρ ′

(S1 ; S2, ρ)⇒ (S2, ρ ′)
(S1, ρ)⇒ (S ′1, ρ ′)

(S1 ; S2, ρ)⇒ (S ′1 ; S2, ρ ′)

tt ∈ B[[b]]ρ
(if l[b] then S1 else S2, ρ)⇒ (S1, ρ)

ff ∈ B[[b]]ρ
(if l[b] then S1 else S2, ρ)⇒ (S2, ρ)

tt ∈ B[[b]]ρ
(while l[b] do S, ρ)⇒ (S ; while l[b] do S, ρ)

ff ∈ B[[b]]ρ
(while l[b] do S, ρ)⇒ ρ

SOS Abstract Interpretation 12 / 78

Control flow graph

Reachable states

Reachable states : the set of pairs of program points and states (k, ρ) such that
execution of program P reaches program point k with state ρ.

Formally :

�
[P]end

�
SOS

=

(k, ρ)

∣∣∣∣∣∣
∃ρ0 ∈ Env,
∃S ∈ Stm, (P, ρ0)⇒∗ (S, ρ) and k = entry(S)
or (P, ρ0)⇒∗ ρ and k = end

SOS Abstract Interpretation 13 / 78

Control flow graph

A control flow graph representation of While
The standard program model in static analysis : the control flow graph.

The graph model used here :
I the nodes are program points k ∈ P,
I the edges are labeled with basic instructions

Instr ::= x := Exp assignment
| assume test execution continues only if

the test succeds

I formally, a cfg is a triple (kinit, S, kend) with
I kinit ∈ P : the entry point,
I kend ∈ P : the exit point,
I S ⊆ P× Instr× P the set of edges.

Remark : data-flow analyses are generally based on other versions of control
flow graphs (instructions are put in nodes).

SOS Abstract Interpretation 14 / 78

Control flow graph

While syntax : example

[0[x :=?];
if 1[x < 0] {

while 2[x < 0] {
3[x := x + 1];

};
4[y := x];

} else {
5[y := 0];

};]6

0

1

2

3
4

5

6

x :=?

x < 0

x < 0

x > 0

x :
=

x+
1

x > 0

y := x

y := 0

assume is left implicit

SOS Abstract Interpretation 15 / 78

Control flow graph

Small-step semantics of cfg

We first define the semantics of instructions : i−→⊆ Env× Env

v ∈ A[[a]]ρ

ρ
x := a−−−→ ρ[x 7→ v]

tt ∈ B[[t]]ρ

ρ
assume t−−−−−→ ρ

Then, a small-step relation→cfg⊆ State× State for a cfg = (kinit, S, kend)

(k1, i, k2) ∈ S ρ1
i−→ ρ2

(k1, ρ1)→cfg (k2, ρ2)

Reachable states for control flow graphs�
(kinit, S, kend)

�
CFG = { (k, ρ) | ∃ρ0 ∈ Env, (kinit, ρ0)→∗(kinit,S,kend)

(k, ρ) }

SOS Abstract Interpretation 16 / 78

Control flow graph

Control flow graph generation (1/2)
cfgl(S) computes the edges of the control flow graph of S using l as final label.

cfgl ∈ Stm→ P(P× Instr× P), l ∈ P
cfgl′

(l[x := e]
)

= {(l, x := e, l ′)}

cfgl′
(l[skip]

)
= {(l, assume T, l ′)} with T ≡ 0 = 0

cfgl′
(
if l[t] { S1 } { S2 }

)
= {(l, assume t, entry(S1))} ∪

{(l, assume neg(t), entry(S2))} ∪ cfgl′(S1) ∪ cfgl′(S2)

cfgl′
(
while l[t] { S }

)
= {(l, assume t, entry(S))}∪

cfgl(S) ∪ {(l, assume neg(t), l ′)}
cfgl′ (S1; S2) = cfgentry(S2)(S1) ∪ cfgl′(S2)

cfg ∈ Prog→ P× P(P× Instr× P)× P
cfg([P]end) = (entry(P), cfgend(P), end)

SOS Abstract Interpretation 17 / 78

Control flow graph

Control flow graph generation (2/2)

Test negation :

neg(e1 = e2) = e1 , e2

neg(e1 , e2) = e1 = e2

neg(e1 < e2) = e2 6 e1

neg(e1 6 e2) = e2 < e1

neg(t1 and t2) = neg(t1) or neg(t1)

neg(t1 or t2) = neg(t1) and neg(t1)

SOS Abstract Interpretation 18 / 78

Control flow graph

Correctness of cfg

Theorem
For all program p, �

cfg(p)
�

CFG =
�

p
�

SOS

From now on, we write
�

p
�

instead of
�

cfg(p)
�

CFG and we identify cfg(p) and p.

SOS Abstract Interpretation 19 / 78

Collecting semantics

Outline

1 Introduction

2 Control flow graph

3 Collecting semantics

4 Approximate analysis : an informal presentation

5 Abstraction by intervals

6 Widening and narrowing

7 Galois connections

8 Polyhedral abstract interpretation

9 References

SOS Abstract Interpretation 20 / 78

Collecting semantics

Collecting Semantics
We define a collecting semantics that gives us the set of reachable states

�
p
�col

k
at each program point k.

∀k ∈ P,
�

p
�col

k = { ρ | (k, ρ) ∈
�

p
�
}

Theorem�
p
�col is the least fixpoint of the following equation system.

∀k ∈ labels(p), Xk = Xinit
k ∪

⋃
(k′,i,k)∈p

~i� (Xk′)

with Xinit
k =

{
Env if k = kinit
∅ otherwise

and ∀i ∈ Instr, ∀X ⊆ Env,

~i� (X) =
{
ρ2 | ∃ρ1 ∈ X, ρ1

i−→ ρ2

}
SOS Abstract Interpretation 21 / 78

Collecting semantics

Example

For the following program, ~P�col is the least solution of the following
equation system :

0

1

2

3

4

5

6

7

8

9

x :=?

x < 0

x < 0

x > 0

x := x + 1
skip

x > 0

y := x

y := 0

skip skip

X0 = Env
X1 = ~x :=?� (X0)

X2 = ~x < 0� (X1) ∪ X4

X3 = ~x < 0� (X2)

X4 = ~x := x + 1� (X3)

X5 = ~x > 0� (X2)

X6 =
�

y := x
�
(X5)

X7 = ~x > 0� (X1)

X8 =
�

y := 0
�
(X7)

X9 = X6 ∪ X8

SOS Abstract Interpretation 22 / 78

Collecting semantics

Collecting semantics and exact analysis
The (Xk)i=1..N are specified as the least solution of a system of equations :

Xk = Fk(X1, X2, . . . , XN) , k ∈ labels(p)

or, equivalently ~X = ~F(~X).

Exact analysis :
I Thanks to Knaster-Tarski, the least solution exists (complete lattice, Fk are

monotone functions),
I Kleene’s fixpoint theorem (Fk are continuous functions) : it is the limit of

X0
k = ∅ , Xn+1

k = Fk(Xn
1 , Xn

2 , . . . , Xn
N)

An uncomputable problem :
I Representing the Xk may be hard (infinite sets).
I The limit may not be reachable in a finite number of steps.

SOS Abstract Interpretation 23 / 78

Collecting semantics

Approximate analysis

Exact analysis :
Least solution of X = F(X) in the complete lattice (P(Env)N,⊆,∪,∩).
Computed as the limit of X0 = ⊥, Xn+1 = F(Xn)

Approximate analysis :
I Replace the concrete lattice (P(Env),⊆,∪,∩) by an abstract lattice

(L],v],t],u])
I whose elements can be (efficiently) represented,
I in which we know how to compute t], u], v], . . .

I “Transpose” the equation X = F(X) of P(Env)N into X = F](X) over (L])N.
I Compute the limit X0 = ⊥, Xn+1 = F](Xn)

Fixpoint approximation : when L] does not verify the ascending chain
condition, the iterative computation may not converge in a finite number of
steps (or sometimes too slowly).
In this case, we need to approximate the limit (see widening/narrowing).

SOS Abstract Interpretation 24 / 78

Approximate analysis : an informal presentation

Outline

1 Introduction

2 Control flow graph

3 Collecting semantics

4 Approximate analysis : an informal presentation

5 Abstraction by intervals

6 Widening and narrowing

7 Galois connections

8 Polyhedral abstract interpretation

9 References

SOS Abstract Interpretation 25 / 78

Approximate analysis : an informal presentation

Just put some]...

From P(Env) to Env]

control flow graph

0

1

2

3

4

5

6

7

8

9

x :=?

x < 0

x < 0

x > 0

x
:=

x
+

1

skip

x > 0

y := x y
:=

0

skip skip

collecting semantics

X0 = Env
X1 = ~x :=?� (X0)

X2 = ~x < 0� (X1) ∪ X4

X3 = ~x < 0� (X2)

X4 = ~x := x + 1� (X3)

X5 = ~x > 0� (X2)

X6 =
�

y := x
�
(X5)

X7 = ~x > 0� (X1)

X8 =
�

y := 0
�
(X7)

X9 = X6 ∪ X8

abstract semantics

X]
0 = >]

Env

X]
1 = ~x :=?�] (X]

0)

X]
2 = ~x < 0�] (X]

1) t
] X]

4

X]
3 = ~x < 0�] (X]

2)

X]
4 = ~x := x + 1�] (X]

3)

X]
5 = ~x > 0�] (X]

2)

X]
6 =

�
y := x

�]
(X]

5)

X]
7 = ~x > 0�] (X]

1)

X]
8 =

�
y := 0

�]
(X]

7)

X]
9 = X]

6 t
] X]

8

SOS Abstract Interpretation 26 / 78

Approximate analysis : an informal presentation

Abstract semantics : the ingredients

I A lattice structure (Env],v]
Env,t]Env,u]Env,⊥]

Env,>]
Env)

I v]
Env is an approximation of ⊆

I t]
Env is an approximation of ∪

I u]
Env is an approximation of ∩

I ⊥]
Env is an approximation of ∅

I >]
Env is an approximation of Env

I For all x ∈ V, e ∈ Exp, an approximation of ~x := e� :

~x := e�] ∈ Env] → Env]

I For all t ∈ test, an approximation of ~t� :

~t�] ∈ Env] → Env]

.

SOS Abstract Interpretation 27 / 78

Approximate analysis : an informal presentation

An abstraction by signs

−0 +0

− 0 +

⊥

>
⊥ represents the property ∅
− represents the property { z | z < 0 }

0 represents the property {0}
+ represents the property { z | z > 0 }

−0 represents the property { z | z 6 0 }

+0 represents the property { z | z > 0 }

> represents the property Z

Env] def
= V→ Sign : a sign is associated with each variable.

SOS Abstract Interpretation 28 / 78

Approximate analysis : an informal presentation

An abstraction by signs : example
X]

0 = >]
Env

X]
1 = ~x :=?�] (X]

0)

X]
2 = ~x < 0�] (X]

1) t
] X]

4

X]
3 = ~x < 0�] (X]

2)

X]
4 = ~x := x + 1�] (X]

3)

X]
5 = ~x > 0�] (X]

2)

X]
6 =

�
y := x

�]
(X]

5)

X]
7 = ~x > 0�] (X]

1)

X]
8 =

�
y := 0

�]
(X]

7)

X]
9 = X]

6 t
] X]

8

which−−−−−−−→
simplifies into

X]
0 = [x : >; y : >]

X]
1 = X]

0[x 7→ >]
X]

2 = X]
1[x 7→ −] t] X]

4

X]
3 = X]

2[x 7→ −]

X]
4 = X]

3[x 7→ succ](X]
3(x))]

X]
5 = X]

2[x 7→ +0]

X]
6 = X]

5[y 7→ X]
5(x)]

X]
7 = X]

1[x 7→ +0]

X]
8 = X]

7[y 7→ 0]

X]
9 = X]

6 t
] X]

8
with

succ](⊥) = ⊥
succ](−) = −0

succ](0) = succ](+) = succ](+0) = +

succ](−0) = succ](>) = >

SOS Abstract Interpretation 29 / 78

Approximate analysis : an informal presentation

Exercise

Perform a sign analysis of the program

[0[x := −1];
if 1[x < 0] {

2[y := −3];
} else {

3[y := 3];
};]4

I Generate the cfg.
I Generate the set of equations.
I Solve the equation system.
I Is there a loss of precision? If yes, why?

SOS Abstract Interpretation 30 / 78

Abstraction by intervals

Outline

1 Introduction

2 Control flow graph

3 Collecting semantics

4 Approximate analysis : an informal presentation

5 Abstraction by intervals

6 Widening and narrowing

7 Galois connections

8 Polyhedral abstract interpretation

9 References

SOS Abstract Interpretation 31 / 78

Abstraction by intervals

The lattice of intervals
Elements :

Int def
= { [a, b] | a, b ∈ Z, a 6 b } ∪ {⊥} with Z = Z ∪ {−∞,+∞}

Order :

I ∈ Int
⊥ vInt I

c 6 a b 6 d a, b, c, d ∈ Z
[a, b] vInt [c, d]

Lattice operations :

I tInt ⊥
def
= I, ∀I ∈ Int

⊥ tInt I def
= I, ∀I ∈ Int

[a, b] tInt [c, d] def
= [min(a, c), max(b, d)]

I uInt ⊥
def
= ⊥, ∀I ∈ Int

⊥ uInt I def
= ⊥, ∀I ∈ Int

[a, b] uInt [c, d] def
= ρInt([max(a, c), min(b, d)])

SOS Abstract Interpretation 32 / 78

Abstraction by intervals

Normalizer : ρInt ∈ (Z×Z)→ Int defined by

ρInt(a, b) =
{

[a, b] if a 6 b,
⊥ otherwise

Least and greatest element :

⊥Int
def
= ⊥

>Int
def
= [−∞,+∞]

Abstraction and concretisation :

αInt(S)
def
= ⊥ if S = ∅

αInt(S)
def
= [min(S), max(S)] otherwise

γInt(⊥)
def
= ∅

γInt([a, b]) def
= { z ∈ Z | a 6 z and z 6 b }

SOS Abstract Interpretation 33 / 78

Abstraction by intervals

Abstraction of basic functions

All the other operators are strict : they return ⊥ if one of their arguments is ⊥.

+] ([a, b], [c, d]) = [a + c, b + d]
−] ([a, b], [c, d]) = [a − d, b − c]
×] ([a, b], [c, d]) = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]

~=�↓]comp ([a, b], [c, d]) = ([a, b] uInt [c, d], [a, b] uInt [c, d])

~<�↓]comp ([a, b], [c, d]) = ([a, b] uInt [−∞, d − 1], [a + 1,+∞] uInt [c, d])

~6�↓]comp ([a, b], [c, d]) = ([a, b] uInt [−∞, d], [a,+∞] uInt [c, d])

~,�↓]comp ([a, b], [c, d]) = ? exercise...

const(n)] = [n, n]

SOS Abstract Interpretation 34 / 78

Abstraction by intervals

Example

x := 100;

while 0 < x {

x := x− 1;
}

0

1

2 3

x := 100

0 < x

x :=
x−

1
0 > x

X1 = [100, 100] tInt
(
X2 −

] [1, 1]
)

X2 = [1,+∞] uInt X1

X3 = [−∞, 0] uInt X1

SOS Abstract Interpretation 35 / 78

Abstraction by intervals

Example : fixpoint iteration

X1 = [100, 100] tInt
(
X2 −

] [1, 1]
)

X2 = [1,+∞] uInt X1
X3 = [−∞, 0] uInt X1

Iteration strategy : 1→ 2→ 3→ 1→ 2→ · · ·

X0
1 = ⊥

X0
2 = ⊥

X0
3 = ⊥

Xn+1
1 = [100, 100] tInt

(
Xn

2 −] [1, 1]
)

Xn+1
2 = [1,+∞] uInt Xn+1

1
Xn+1

3 = [−∞, 0] uInt Xn+1
1

X1 ⊥

[100, 100] [99, 100] [98, 100] [97, 100]

· · ·

[1, 100] [0, 100]

X2 ⊥

[100, 100] [99, 100] [98, 100] [97, 100]

· · ·

[1, 100] [1, 100]

X3 ⊥

⊥ ⊥ ⊥ ⊥

· · ·

⊥ [0, 0]

SOS Abstract Interpretation 36 / 78

Abstraction by intervals

Example : fixpoint iteration

X1 = [100, 100] tInt
(
X2 −

] [1, 1]
)

X2 = [1,+∞] uInt X1
X3 = [−∞, 0] uInt X1

Iteration strategy : 1→ 2→ 3→ 1→ 2→ · · ·

X0
1 = ⊥

X0
2 = ⊥

X0
3 = ⊥

Xn+1
1 = [100, 100] tInt

(
Xn

2 −] [1, 1]
)

Xn+1
2 = [1,+∞] uInt Xn+1

1
Xn+1

3 = [−∞, 0] uInt Xn+1
1

X1 ⊥ [100, 100] [99, 100] [98, 100] [97, 100] · · · [1, 100] [0, 100]
X2 ⊥ [100, 100] [99, 100] [98, 100] [97, 100] · · · [1, 100] [1, 100]
X3 ⊥ ⊥ ⊥ ⊥ ⊥ · · · ⊥ [0, 0]

SOS Abstract Interpretation 36 / 78

Abstraction by intervals

Convergence problemTreillis de hauteur infinie (ex : intervalles)

[−3, −1] [−2, 0] [−1, 1] [0, 2] [1, 3]

[−3, −2] [−2, −1] [−1, 0] [0, 1] [1, 2] [2, 3]

[−3, −3] [−2, −2] [−1, −1] [0, 0] [1, 1] [2, 2] [3, 3]

⊥
Dans un tel treillis, y0 = ⊥, yn+1 = F](yn)
ne converge pas nécessairement en un nombre borné d’étapes.
Exemple : analyse d’un compteur incrémenté indéfiniment

Deux solutions

S’interdire de tels treillis abstraits ? Bien dommage !

Extrapoler la limite avec un op. d’élargissement ∇
Idée : [−3, 3] ∇ [−5, 3] = [−∞, 3]

n n + 1 extrapolation

– p.6

The lattice of intervals does not satisfy the ascending chain condition.

Example of infinite increasing chain :

⊥ @ [0, 0] @ [0, 1] @ · · · @ [0, n] @ · · ·

Solution : dynamic approximation
I we extrapolate the limit thanks to a widening operator∇

⊥ @ [0, 0] @ [0, 1] @ [0, 2] @ [0,+∞] = [0, 2]∇[0, 3]

SOS Abstract Interpretation 37 / 78

Widening and narrowing

Outline

1 Introduction

2 Control flow graph

3 Collecting semantics

4 Approximate analysis : an informal presentation

5 Abstraction by intervals

6 Widening and narrowing

7 Galois connections

8 Polyhedral abstract interpretation

9 References

SOS Abstract Interpretation 38 / 78

Widening and narrowing

Fixpoint approximation

Lemma
Let (A,v,t,u) be a complete lattice and f a monotone operator on A.
If a is a post-fixpoint of f (i.e. f (a) v a), then lfp(f) v a.

We may want to over-approximate lfp(f) in the following cases :
I The lattice does not satisfies the ascending chain condition,

the iteration ⊥, f (⊥), . . . , f n(⊥), . . . may never terminate.
I The ascending chain condition is satisfied but the iteration chain is too

long to allow an efficient computation.
I The underlying lattice is not complete, so the limits of the ascending

iterations do not necessarily belong to the abstraction domain.

SOS Abstract Interpretation 39 / 78

Widening and narrowing

Widening

Idea : the standard iteration is of the form

x0 = ⊥, xn+1 = F(xn) = xn t F(xn)

We will replace it by something of the form

y0 = ⊥, yn+1 = yn∇F(yn)

such that
(i) (yn) is increasing,

(ii) xn v yn, for all n,
(iii) and (yn) stabilizes after a finite number of steps.
But we also want a∇ operator that is independent of F.

SOS Abstract Interpretation 40 / 78

Widening and narrowing

Widening : definition

A widening is an operator∇ : L× L→ L such that
I ∀x, x ′ ∈ L, x t x ′ v x∇x ′ (implies (i) & (ii))
I If x0 v x1 v . . . is an increasing chain, then the increasing chain

y0 = x0, yn+1 = yn∇xn+1 stabilizes after a finite number of steps (implies
(iii)).

Usage : we replace x0 = ⊥, xn+1 = F(xn)
by y0 = ⊥, yn+1 = yn∇F(yn)

SOS Abstract Interpretation 41 / 78

Widening and narrowing

Widening : theorem

Theorem
Let
I L be a complete lattice,
I F : L→ L be a monotone function and
I ∇ : L× L→ L a widening operator.

Then, the chain y0 = ⊥, yn+1 = yn∇F(yn) stabilizes after a finite number of steps at a
post-fixpoint y of F.

Corollary : lfp(F) v y.

SOS Abstract Interpretation 42 / 78

Widening and narrowing

Scheme

⊥

>

lfp(f)
increasing
iteration
with O

decreasing
iteration
with ∆

SOS Abstract Interpretation 43 / 78

Widening and narrowing

Example : widening on intervals

Idea : as soon as a bound is not stable, we extrapolate it by +∞ (or −∞). After
such an extrapolation, the bound can’t move any more.

Definition :

[a, b]∇Int[a ′, b ′] = [if a ′ < a then −∞ else a,
if b ′ > b then +∞ else b]

⊥∇Int[a ′, b ′] = [a ′, b ′]
I ∇Int ⊥ = I

Examples :
[−3, 4]∇Int[−3, 2] = [−3, 4]
[−3, 4]∇Int[−3, 5] = [−3,+∞]

SOS Abstract Interpretation 44 / 78

Widening and narrowing

Example

x := 100;

while 0 < x {

x := x− 1;
}

0

1

2 3

x := 100

0 < x

x :=
x−

1
0 > x

X1 = [100, 100] tInt
(
X2 −

] [1, 1]
)

X2 = [1,+∞] uInt X1

X3 = [−∞, 0] uInt X1

SOS Abstract Interpretation 45 / 78

Widening and narrowing

Example : without widening

X1 = [100, 100] tInt
(
X2 −

] [1, 1]
)

X2 = [1,+∞] uInt X1
X3 = [−∞, 0] uInt X1

Iteration strategy : 1→ 2→ 3→ 1→ 2→ · · ·

X0
1 = ⊥

X0
2 = ⊥

X0
3 = ⊥

Xn+1
1 = [100, 100] tInt

(
Xn

2 −] [1, 1]
)

Xn+1
2 = [1,+∞] uInt Xn+1

1
Xn+1

3 = [−∞, 0] uInt Xn+1
1

X1 ⊥

[100, 100] [99, 100] [98, 100] [97, 100]

· · ·

[1, 100] [0, 100]

X2 ⊥

[100, 100] [99, 100] [98, 100] [97, 100]

· · ·

[1, 100] [1, 100]

X3 ⊥

⊥ ⊥ ⊥ ⊥

· · ·

⊥ [0, 0]

SOS Abstract Interpretation 46 / 78

Widening and narrowing

Example : without widening

X1 = [100, 100] tInt
(
X2 −

] [1, 1]
)

X2 = [1,+∞] uInt X1
X3 = [−∞, 0] uInt X1

Iteration strategy : 1→ 2→ 3→ 1→ 2→ · · ·

X0
1 = ⊥

X0
2 = ⊥

X0
3 = ⊥

Xn+1
1 = [100, 100] tInt

(
Xn

2 −] [1, 1]
)

Xn+1
2 = [1,+∞] uInt Xn+1

1
Xn+1

3 = [−∞, 0] uInt Xn+1
1

X1 ⊥ [100, 100] [99, 100] [98, 100] [97, 100] · · · [1, 100] [0, 100]
X2 ⊥ [100, 100] [99, 100] [98, 100] [97, 100] · · · [1, 100] [1, 100]
X3 ⊥ ⊥ ⊥ ⊥ ⊥ · · · ⊥ [0, 0]

SOS Abstract Interpretation 46 / 78

Widening and narrowing

Example : with widening at each node of the cfg

X1 = [100, 100] tInt
(
X2 −

] [1, 1]
)

X2 = [1,+∞] uInt X1
X3 = [−∞, 0] uInt X1

Iteration strategy : 1→ 2→ 3→ 1→ 2→ · · ·

X0
1 = ⊥

X0
2 = ⊥

X0
3 = ⊥

Xn+1
1 = Xn

1OInt
(
[100, 100] tInt

(
Xn

2 −] [1, 1]
))

Xn+1
2 = Xn

2OInt
(
[1,+∞] uInt Xn+1

1

)
Xn+1

3 = Xn
3OInt

(
[−∞, 0] uInt Xn+1

1

)
X1 ⊥

[100, 100] [−∞, 100]

X2 ⊥

[100, 100] [−∞, 100]

X3 ⊥

⊥ [−∞, 0]

SOS Abstract Interpretation 47 / 78

Widening and narrowing

Example : with widening at each node of the cfg

X1 = [100, 100] tInt
(
X2 −

] [1, 1]
)

X2 = [1,+∞] uInt X1
X3 = [−∞, 0] uInt X1

Iteration strategy : 1→ 2→ 3→ 1→ 2→ · · ·

X0
1 = ⊥

X0
2 = ⊥

X0
3 = ⊥

Xn+1
1 = Xn

1OInt
(
[100, 100] tInt

(
Xn

2 −] [1, 1]
))

Xn+1
2 = Xn

2OInt
(
[1,+∞] uInt Xn+1

1

)
Xn+1

3 = Xn
3OInt

(
[−∞, 0] uInt Xn+1

1

)
X1 ⊥ [100, 100] [−∞, 100]
X2 ⊥ [100, 100] [−∞, 100]
X3 ⊥ ⊥ [−∞, 0]

SOS Abstract Interpretation 47 / 78

Widening and narrowing

Improving fixpoint approximation
Idea : iterating a little more may help...

Theorem
Let (A,v,t,u) be a complete lattice, f a monotone operator on A and a a
post-fixpoint of f .

The chain (xn)n defined by {
x0 = a
xk+1 = f (xk)

admits for limit (
�

{xn}) the greatest fixpoint of f smaller than a (written gfpa(f)).

In particular,
I lfp(f) v

�
{xn}.

I Each intermediate step is a correct approximation :

∀k, lfp(f) v gfpa(f) v xk v a

SOS Abstract Interpretation 48 / 78

Widening and narrowing

Narrowing : definition

A narrowing is an operator ∆ : L× L→ L such that
I ∀x, x ′ ∈ L, x ′ v x∆x ′ v x
I If x0 w x1 w . . . is a decreasing chain, then the chain

y0 = x0, yn+1 = yn∆xn+1 stabilizes after a finite number of steps.

SOS Abstract Interpretation 49 / 78

Widening and narrowing

Narrowing : decreasing iteration

Theorem
If ∆ is a narrowing operator on a poset (A,v),

and f is a monotone operator on A
and a is a post-fixpoint of f

then the chain (xn)n defined by{
x0 = a
xk+1 = xk∆f (xk)

stabilizes after a finite number of steps
at a post-fixpoint of f lower than a.

SOS Abstract Interpretation 50 / 78

Widening and narrowing

Narrowing on intervals

[a, b]∆Int[c, d] = [if a = −∞ then c else a ; if b = +∞ then d else b]
I ∆Int ⊥ = ⊥
⊥ ∆Int I = ⊥

Intuition : we only improve infinite bounds.

In practice : a few standard iterations already improve a lot the result that has
been obtained after widening...
I Assignments by constants and conditional guards make the decreasing

iterations efficient : they filter the (too big) approximations computed by
the widening

SOS Abstract Interpretation 51 / 78

Widening and narrowing

Example : with narrowing at each node of the cfg

X1 = [100, 100] tInt
(
X2 −

] [1, 1]
)

X2 = [1,+∞] uInt X1
X3 = [−∞, 0] uInt X1

Iteration strategy : 1→ 2→ 3→ 1→ 2→ · · ·

X0
1 = [−∞, 100]

X0
2 = [−∞, 100]

X0
3 = [−∞, 0]

Xn+1
1 = Xn

1∆Int
(
[100, 100] tInt

(
Xn

2 −] [1, 1]
))

Xn+1
2 = Xn

2∆Int
(
[1,+∞] uInt Xn+1

1

)
Xn+1

3 = Xn
3∆Int

(
[−∞, 0] uInt Xn+1

1

)
X1 [−∞, 100]

[−∞, 100] [0, 100]

X2 [−∞, 100]

[1, 100] [1, 100]

X3 [−∞, 0]

[−∞, 0] [0, 0]

SOS Abstract Interpretation 52 / 78

Widening and narrowing

Example : with narrowing at each node of the cfg

X1 = [100, 100] tInt
(
X2 −

] [1, 1]
)

X2 = [1,+∞] uInt X1
X3 = [−∞, 0] uInt X1

Iteration strategy : 1→ 2→ 3→ 1→ 2→ · · ·

X0
1 = [−∞, 100]

X0
2 = [−∞, 100]

X0
3 = [−∞, 0]

Xn+1
1 = Xn

1∆Int
(
[100, 100] tInt

(
Xn

2 −] [1, 1]
))

Xn+1
2 = Xn

2∆Int
(
[1,+∞] uInt Xn+1

1

)
Xn+1

3 = Xn
3∆Int

(
[−∞, 0] uInt Xn+1

1

)
X1 [−∞, 100] [−∞, 100] [0, 100]
X2 [−∞, 100] [1, 100] [1, 100]
X3 [−∞, 0] [−∞, 0] [0, 0]

SOS Abstract Interpretation 52 / 78

Widening and narrowing

The particular case of an equation system
Consider a system x1 = f1(x1, . . . , xn)...

xn = fn(x1, . . . , xn)

with f1, . . . , fn monotones.
Standard iteration :

xi+1
1 = f1(xi

1, . . . , xi
n)

xi+1
2 = f2(xi

1, . . . , xi
n)

...
xi+1

n = fn(xi
1, . . . , xi

n)

Standard iteration with widening :

xi+1
1 = xi

1Of1(xi
1, . . . , xi

n)

xi+1
2 = xi

2Of2(xi
1, . . . , xi

n)
...

xi+1
n = xi

nOfn(xi
1, . . . , xi

n)

SOS Abstract Interpretation 53 / 78

Widening and narrowing

The particular case of an equation system

 x1 = f1(x1, . . . , xn)...
xn = fn(x1, . . . , xn)

It is sufficient (and generally more precise) to use O for a selection of index W
provided that each dependence cycle in the system goes through at least one
point in W.

∀k = 1..n, xi+1
k = xi

kOfk(xi
1, . . . , xi

n) if k ∈W
fk(xi

1, . . . , xi
n) otherwise

Chaotic iteration : at each step, we use only one equation, without forgetting
one for ever.
Beware : this time the iteration strategy may affect the precision of the
obtained post-fixpoint !
Delayed widening : It is generally better to wait a few standard iterations
before launching the widenings.

SOS Abstract Interpretation 54 / 78

Galois connections

Outline

1 Introduction

2 Control flow graph

3 Collecting semantics

4 Approximate analysis : an informal presentation

5 Abstraction by intervals

6 Widening and narrowing

7 Galois connections

8 Polyhedral abstract interpretation

9 References

SOS Abstract Interpretation 55 / 78

Galois connections

What is an approximation?. Example : P(Z)

For a program with only one
variable, the set of concrete
properties is

A = P(Env) = P(Z)

=

{z | z > 3},
{z | z2 > 6},
{z | z mod 2 = 0},
{z | z = 0},
{z | z > 0},
. . .

which can be partially ordered
by ⊆ (logical implication).

Z

{z | z > 3}

{z | z2 > 6}

{z | z > 0}

{z | z = 0}

{z | z 6 0}

∅

{z | z mod 2 = 0}

· · ·

· · ·

SOS Abstract Interpretation 56 / 78

Galois connections

Example : signs

We select only 4 properties

A =
{
∅, Z+, Z−, Z

}
The property � to be greater
than 3 � (i.e. p3{ z ∈ Z | z > 3 })
is correctly approximated by
Z+ et Z.

p3 ⊆ Z+ p3 ⊆ Z

Z

{z | z > 3}

{z | z2 > 6}

{z | z > 0}

{z | z = 0}

{z | z 6 0}

∅

{z | z mod 2 = 0}

· · ·

· · ·

SOS Abstract Interpretation 57 / 78

Galois connections

Example : sign analysis

A = P(Z) A =
{
∅,Z,Z+,Z−

}

Z− Z+

∅

Z

The successor operation x 7→ x + 1 is
approximated by

p ∅ Z Z+ Z−

succ(p) ∅ Z Z+ Z

The predecessor operation x 7→ x − 1 is
approximated by

p ∅ Z Z+ Z−

pred(p) ∅ Z Z Z−

Which property of A do we choose to approximate the property {0}?
I if we choose Z+

x = 0; y = x +1; z = x -1 → x ∈ Z+, y ∈ Z+, z ∈ Z
I if we choose Z−

x = 0; y = x +1; z = x -1 → x ∈ Z−, y ∈ Z, z ∈ Z−

I however, we would prefer : y ∈ Z+, z ∈ Z−

SOS Abstract Interpretation 58 / 78

Galois connections

Example : sign analysis

A = P(Z)

Z− Z+

∅

Z

Z− Z+

{0}

∅

Z

A1 = {∅,Z,Z+,Z−} A2 = {∅,Z,Z+,Z−, {0}}

Problem : {0} does not have a best approximation in A1.
I because Z− ∩Z+ < A1

But A2 is closed under intersection.
I Z− ∩Z+,Z ∩Z+, . . . , {0} ∩Z− ∩Z+, . . . ∈ A2

SOS Abstract Interpretation 59 / 78

Galois connections

Galois connections

Definition
Let (L1,v1,t1,u1) and (L2,v2,t2,u2) be two complete lattices.

A pair of functions α ∈ L1 → L2 and γ ∈ L2 → L1 is a Galois connection if it
verifies the condition

∀x1 ∈ L1,∀x2 ∈ L2, α(x1) v2 x2 ⇐⇒ x1 v1 γ(x2)

SOS Abstract Interpretation 60 / 78

Galois connections

What is a good approximation space?

1 concrete world : a complete lattice, generally of the form (P(D),⊆,
⋃

,
⋂
)

2 abstract world : a complete lattice
(

A],v],
⊔],
�]
)

3 link between them : Galois connection.(
P(D),⊆,

⋃
,
⋂) γ←−−−−→

α

(
A],v],t],u]

)

� a] ∈ A] is a correct approximation of a ∈ P(D) �

⇐⇒ α(a) v] a]

⇐⇒ a ⊆ γ(a])

α : abstraction function γ : concretisation function

Remark : in practice, γ is sufficient to prove the soundness of analyses, but we
lose some “nice” theorems...

SOS Abstract Interpretation 61 / 78

Galois connections

A A]

P]
γ(P]) α(γ(P]))

P

γ(α((P))
α(P)

SOS Abstract Interpretation 62 / 78

Galois connections

Galois connections, properties (1)

If α : L→ L], γ : L] → L is a Galois connection.
I γ ◦ α is extensive : ∀x ∈ L, x v γ(α(x)) :

the abstraction is a correct approximation
I α ◦ γ is retractive : ∀y ∈ L], α(γ(y) v] y :

if L] is � well chosen �, α ◦ γ = id and (hence) γ is injective (two distinct
abstract values never represent the same concrete property)

I α and γ are monotone
� the more information we have on a concrete object, the more we have
on its abstraction, and vice-versa �

Remarks :
I x v x ′ means that x handles more information than x ′, i.e. gives a more

precise information,
I >means : everything is possible.

SOS Abstract Interpretation 63 / 78

Galois connections

Function approximation (1)

When some computations in the concrete world are uncomputable or too
costly, the abstract world can be used to execute a simplified version of these
computations.
I the abstract computation must always give a conservative answer w.r.t.

the concrete computation

Let f ∈ A→ A in the concrete world and f] ∈ A] → A] which correctly
approximates each concrete computation.

A
f−−−−→ Ay y

A] f]−−−−→ A]

α(a) v] a] ⇒ α(f (a)) v] f](a])

SOS Abstract Interpretation 64 / 78

Galois connections

Function approximation (1)
If α : L→ L], γ : L] → L is a Galois connection.

Definition
A function f] ∈ A] → A] is called a correct approximation of f ∈ A→ A if

∀a ∈ A, a] ∈ A],α(a) v] a] ⇒ α(f (a)) v] f](a])

For the monotone abstract functions, we can state several equivalent criteria.

Theorem

For a monotone function f] ∈ A] → A] and a function f ∈ A→ A, the four
following assertions are equivalent :

(i) f] is correct approximation of f ,

(ii) α ◦ f v̇] f] ◦ α
(iii) α ◦ f ◦ γ v̇] f]

(iv) f ◦ γ v̇ γ ◦ f]

SOS Abstract Interpretation 65 / 78

Galois connections

Fixpoint transfer

Theorem

Given a Galois connection (A,v,
⊔

,
�
)

γ←−−−−→
α

(
A],v],

⊔],
�]
)

, a monotone

function f] ∈ A] → A] and a monotone function f ∈ A→ A which verifies
α ◦ f = f] ◦ α, we have

α(lfp(f)) = lfp(f])

Theorem

Given a Galois connection (A,v,
⊔

,
�
)

γ←−−−−→
α

(
A],v],

⊔],
�]
)

, a monotone

function f] ∈ A] → A] and a monotone function f ∈ A→ A which verify
α ◦ f v] f] ◦ α, we have

α(lfp(f)) v] lfp(f])

SOS Abstract Interpretation 66 / 78

Galois connections

Best abstract interpretation

From the equivalences

α ◦ f v̇] f] ◦ α ⇐⇒ α ◦ f ◦ γ v̇] f] ⇐⇒ f ◦ γ v̇ γ ◦ f]

we have that α ◦ f ◦ γ is the best abstract function f] which verifies
α(lfp(f)) v] lfp(f]).

But : α ◦ f ◦ γmust not be confused with an implementation of f].

In practice,
I α ◦ f ◦ γ gives a specification of the best abstraction,
I not an algorithm (because α is rarely computable)

SOS Abstract Interpretation 67 / 78

Galois connections

Exercise
Suppose we analyze programs with 3 variables x1, x2 and x3. A state is a triple
(v1, v2, v3) where vi ∈ Z is the current value of variable xi.

Env = Z3 A = P(Z3)

We would like to design an abstract domain that tracks equalities between
variables, and select the following properties for A

A =

∅,

{(v, v, u) | v ∈ Z, u ∈ Z},
{(u, v, v) | u ∈ Z, v ∈ Z},
{(v, u, v) | u ∈ Z, v ∈ Z},

Z3

What is the lattice (abstract domain) for this selection of properties?

We next want to define the corresponding Galois connection, but that turns
out to be difficult—why? What’s the problem with our abstract domain?
How can it be repaired?

SOS Abstract Interpretation 68 / 78

Galois connections

Exercise

Consider the following concrete operators

~x1 := ?� , ~x1 := x2� , ~assume x1 = x2� ∈ P(Z3)→ P(Z3)

Using the abstraction proposed in the previous exercise, give sound
approximations for these operators.

Prove they are sound wrt. the given abstraction choice.

Prove they are optimal wrt. the given abstraction choice.

SOS Abstract Interpretation 69 / 78

Polyhedral abstract interpretation

Outline

1 Introduction

2 Control flow graph

3 Collecting semantics

4 Approximate analysis : an informal presentation

5 Abstraction by intervals

6 Widening and narrowing

7 Galois connections

8 Polyhedral abstract interpretation

9 References

SOS Abstract Interpretation 70 / 78

Polyhedral abstract interpretation

Polyhedral abstract interpretation
Polyhedral analysis seeks to discover invariants of linear equality and
inequality relations (such as x = y or x 6 2y + z) among the variables of an
imperative program.

A convex polyhedron can be
defined
I algebraically as the set of

solutions of a system of
linear inequalities.

I geometrically, as a finite
intersection of half-spaces.

The classical reference :

Automatic discovery of linear restraints among variables of a program.
P. Cousot and N. Halbwachs. POPL’78.

SOS Abstract Interpretation 71 / 78

Polyhedral abstract interpretation

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.

x

y

At junction point, we over
approximate union by a
convex union.

x = 0; y = 0;

while (x<6) {

if (?) {

y = y+2;

};

x = x+1;

}

SOS Abstract Interpretation 72 / 78

Polyhedral abstract interpretation

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.

x

y

At junction point, we over
approximate union by a
convex union.

x = 0; y = 0;

{x = 0 ∧ y = 0}

while (x<6) {

if (?) {

{x = 0 ∧ y = 0}
y = y+2;

};

x = x+1;

}

SOS Abstract Interpretation 72 / 78

Polyhedral abstract interpretation

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.

x

y

At junction points, we
over-approximates union by
a convex union.

x = 0; y = 0;

{x = 0 ∧ y = 0}

while (x<6) {

if (?) {

{x = 0 ∧ y = 0}
y = y+2;

{x = 0 ∧ y = 2}
};

{x = 0 ∧ y = 0}] {x = 0 ∧ y = 2}

x = x+1;

}

SOS Abstract Interpretation 72 / 78

Polyhedral abstract interpretation

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.

x

y

At junction points, we
over-approximates union by
a convex union.

x = 0; y = 0;

{x = 0 ∧ y = 0}

while (x<6) {

if (?) {

{x = 0 ∧ y = 0}
y = y+2;

{x = 0 ∧ y = 2}
};

{x = 0 ∧ 0 6 y 6 2}

x = x+1;

}

SOS Abstract Interpretation 72 / 78

Polyhedral abstract interpretation

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.

x

y

At junction point, we over
approximate union by a
convex union.

x = 0; y = 0;

{x = 0 ∧ y = 0}

while (x<6) {

if (?) {

{x = 0 ∧ y = 0}
y = y+2;

{x = 0 ∧ y = 2}
};

{x = 0 ∧ 0 6 y 6 2}

x = x+1;

{x = 1 ∧ 0 6 y 6 2}
}

SOS Abstract Interpretation 72 / 78

Polyhedral abstract interpretation

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.

x

y

At junction point, we over
approximate union by a
convex union.

x = 0; y = 0;

{x = 0 ∧ y = 0}] {x = 1 ∧ 0 6 y 6 2}

while (x<6) {

if (?) {

{x = 0 ∧ y = 0}
y = y+2;

{x = 0 ∧ y = 2}
};

{x = 0 ∧ 0 6 y 6 2}

x = x+1;

{x = 1 ∧ 0 6 y 6 2}
}

SOS Abstract Interpretation 72 / 78

Polyhedral abstract interpretation

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.

x

y

At junction point, we over
approximate union by a
convex union.

x = 0; y = 0;

{x 6 1 ∧ 0 6 y 6 2x}

while (x<6) {

if (?) {

{x = 0 ∧ y = 0}
y = y+2;

{x = 0 ∧ y = 2}
};

{x = 0 ∧ 0 6 y 6 2}

x = x+1;

{x = 1 ∧ 0 6 y 6 2}
}

SOS Abstract Interpretation 72 / 78

Polyhedral abstract interpretation

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.

x

y

At junction point, we over
approximate union by a
convex union.

x = 0; y = 0;

{x 6 1 ∧ 0 6 y 6 2x}

while (x<6) {

if (?) {

{x 6 1 ∧ 0 6 y 6 2x}
y = y+2;

{x = 0 ∧ y = 2}
};

{x = 0 ∧ 0 6 y 6 2}

x = x+1;

{x = 1 ∧ 0 6 y 6 2}
}

SOS Abstract Interpretation 72 / 78

Polyhedral abstract interpretation

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.

x

y

At junction point, we over
approximate union by a
convex union.

x = 0; y = 0;

{x 6 1 ∧ 0 6 y 6 2x}

while (x<6) {

if (?) {

{x 6 1 ∧ 0 6 y 6 2x}
y = y+2;

{x 6 1 ∧ 2 6 y 6 2x+ 2}
};

{x = 0 ∧ 0 6 y 6 2}

x = x+1;

{x = 1 ∧ 0 6 y 6 2}
}

SOS Abstract Interpretation 72 / 78

Polyhedral abstract interpretation

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.

x

y

At junction point, we over
approximate union by a
convex union.

x = 0; y = 0;

{x 6 1 ∧ 0 6 y 6 2x}

while (x<6) {

if (?) {

{x 6 1 ∧ 0 6 y 6 2x}
y = y+2;

{x 6 1 ∧ 2 6 y 6 2x+ 2}
};

{x 6 1 ∧ 0 6 y 6 2x}
]{x 6 1 ∧ 2 6 y 6 2x+ 2}

x = x+1;

{x = 1 ∧ 0 6 y 6 2}
}

SOS Abstract Interpretation 72 / 78

Polyhedral abstract interpretation

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.

x

y

At junction point, we over
approximate union by a
convex union.

x = 0; y = 0;

{x 6 1 ∧ 0 6 y 6 2x}

while (x<6) {

if (?) {

{x 6 1 ∧ 0 6 y 6 2x}
y = y+2;

{x 6 1 ∧ 2 6 y 6 2x+ 2}
};

{0 6 x 6 1 ∧ 0 6 y 6 2x+ 2}

x = x+1;

{x = 1 ∧ 0 6 y 6 2}
}

SOS Abstract Interpretation 72 / 78

Polyhedral abstract interpretation

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.

x

y

At junction point, we over
approximate union by a
convex union.

x = 0; y = 0;

{x 6 1 ∧ 0 6 y 6 2x}

while (x<6) {

if (?) {

{x 6 1 ∧ 0 6 y 6 2x}
y = y+2;

{x 6 1 ∧ 2 6 y 6 2x+ 2}
};

{0 6 x 6 1 ∧ 0 6 y 6 2x+ 2}

x = x+1;

{1 6 x 6 2 ∧ 0 6 y 6 2x}
}

SOS Abstract Interpretation 72 / 78

Polyhedral abstract interpretation

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.

x

y

At loop headers, we use
heuristics (widening) to
ensure finite convergence.

x = 0; y = 0;

{x 6 1 ∧ 0 6 y 6 2x}
O {x 6 2 ∧ 0 6 y 6 2x}

while (x<6) {

if (?) {

{x 6 1 ∧ 0 6 y 6 2x}
y = y+2;

{x 6 1 ∧ 2 6 y 6 2x+ 2}
};

{0 6 x 6 1 ∧ 0 6 y 6 2x+ 2}

x = x+1;

{1 6 x 6 2 ∧ 0 6 y 6 2x}
}

SOS Abstract Interpretation 72 / 78

Polyhedral abstract interpretation

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.

x

y

At loop headers, we use
heuristics (widening) to
ensure finite convergence.

x = 0; y = 0;

{0 6 y 6 2x}

while (x<6) {

if (?) {

{x 6 1 ∧ 0 6 y 6 2x}
y = y+2;

{x 6 1 ∧ 2 6 y 6 2x+ 2}
};

{0 6 x 6 1 ∧ 0 6 y 6 2x+ 2}

x = x+1;

{1 6 x 6 2 ∧ 0 6 y 6 2x}
}

SOS Abstract Interpretation 72 / 78

Polyhedral abstract interpretation

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.

By propagation we obtain a
post-fixpoint

which is
enhanced by downward
iteration.

x = 0; y = 0;

{0 6 y 6 2x}

while (x<6) {

if (?) {

{0 6 y 6 2x ∧ x 6 5}
y = y+2;

{2 6 y 6 2x+ 2 ∧ x 6 5}
};

{0 6 y 6 2x+ 2 ∧ 0 6 x 6 5}

x = x+1;

{0 6 y 6 2x ∧ 1 6 x 6 6}
}

{0 6 y 6 2x ∧ 6 6 x}

SOS Abstract Interpretation 72 / 78

Polyhedral abstract interpretation

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.

By propagation we obtain a
post-fixpoint which is
enhanced by downward
iteration.

x = 0; y = 0;

{0 6 y 6 2x ∧ x 6 6}

while (x<6) {

if (?) {

{0 6 y 6 2x ∧ x 6 5}
y = y+2;

{2 6 y 6 2x+ 2 ∧ x 6 5}
};

{0 6 y 6 2x+ 2 ∧ 0 6 x 6 5}

x = x+1;

{0 6 y 6 2x ∧ 1 6 x 6 6}
}

{0 6 y 6 2x ∧ 6 = x}

SOS Abstract Interpretation 72 / 78

Polyhedral abstract interpretation

Polyhedral analysis

A more complex example.

The analysis accepts to
replace some constants by
parameters.

x = 0; y = A;

{A 6 y 6 2x+ A ∧ x 6 N}

while (x<N) {

if (?) {

{A 6 y 6 2x+ A ∧ x 6 N − 1}
y = y+2;

{A + 2 6 y 6 2x+ A + 2 ∧ x 6 N − 1}
};

{A 6 y 6 2x+ A + 2 ∧ 0 6 x 6 N − 1}

x = x+1;

{A 6 y 6 2x+ A ∧ 1 6 x 6 N}

}

{A 6 y 6 2x+ A ∧ N = x}

SOS Abstract Interpretation 73 / 78

Polyhedral abstract interpretation

The four polyhedra operations
I] ∈ Pn × Pn → Pn : convex union

I over-approximates the concrete
union at junction points

I ∩ ∈ Pn × Pn → Pn : intersection
I over-approximates the concrete

intersection after a conditional
instruction

I ~x :=e� ∈ Pn → Pn : affine transformation

I over-approximates the assignment
of a variable by a linear expression

I O ∈ Pn × Pn → Pn : widening
I ensures (and accelerates)

convergence of (post-)fixpoint
iteration

I includes heuristics to infer loop
invariants

x = 0; y = 0;

P0 = ~y := 0� ~x := 0� (Q2) O P4

while (x<6) {

if (?) {

P1 = P0 ∩ {x < 6}
y = y+2;

P2 = ~y := y+ 2� (P1)
};

P3 = P1] P2

x = x+1;

P4 = ~x := x+ 1� (P3)
}

P5 = P0 ∩ {x > 6}

SOS Abstract Interpretation 74 / 78

Polyhedral abstract interpretation

Library for manipulating polyhedra

I Parma Polyhedra Library 1 (PPL), NewPolka : complex C/C++ libraries
I They rely on the Double Description Method

I polyhedra are managed using two representations in parallel

s1

s2

s3

r1

r2

I by set of inequalities

P =

 (x, y) ∈ Q2

∣∣∣∣∣∣∣∣
x > −1
x − y > −3
2x + y > −2
x + 2y > −4

I by set of generators

P =

{
λ1s1 + λ2s2 + λ3s3 +µ1r1 +µ2r2 ∈ Q2

∣∣∣∣ λ1,λ2,λ3,µ1,µ2 ∈ R+

λ1 + λ2 + λ3 = 1

}
I operations efficiency strongly depends on the chosen representations, so

they keep both

1. Previous tutorial on polyhedra partially comes from http://www.cs.unipr.it/ppl/
SOS Abstract Interpretation 75 / 78

http://www.cs.unipr.it/ppl/

References

Outline

1 Introduction

2 Control flow graph

3 Collecting semantics

4 Approximate analysis : an informal presentation

5 Abstraction by intervals

6 Widening and narrowing

7 Galois connections

8 Polyhedral abstract interpretation

9 References

SOS Abstract Interpretation 76 / 78

References

References (1)

A few articles
I a short formal introduction :

P. Cousot and R. Cousot. Basic Concepts of Abstract Interpretation. http://www.di.ens.
fr/˜cousot/COUSOTpapers/WCC04.shtml

I technical but very complete (the logic programming part is optional) :
P. Cousot and R. Cousot. Abstract Interpretation and Application to Logic Programs. http:
//www.di.ens.fr/˜cousot/COUSOTpapers/JLP92.shtml

I application of abstract interpretation to verify Airbus flight commands :
P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The
ASTRÉE Analyser. http://www.di.ens.fr/˜cousot/COUSOTpapers/ESOP05.shtml

SOS Abstract Interpretation 77 / 78

http://www.di.ens.fr/~cousot/COUSOTpapers/WCC04.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/WCC04.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/JLP92.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/JLP92.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/ESOP05.shtml

References

References (2)

On the web :
I informal presentation of AI with nice pictures

http://www.di.ens.fr/˜cousot/AI/IntroAbsInt.html

I a short abstract of various works around AI
http://www.di.ens.fr/˜cousot/AI/

I very complete lecture notes
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

SOS Abstract Interpretation 78 / 78

http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
http://www.di.ens.fr/~cousot/AI/
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

	Introduction
	Control flow graph
	Collecting semantics
	Approximate analysis: an informal presentation
	Abstraction by intervals
	Widening and narrowing
	Galois connections
	Polyhedral abstract interpretation
	References

