Operational Semantics

Simon Castellan
https://sicastel.gitlabpages.inria.fr/m2-sos

SOS, Master Recherche Science Informatique, U. Rennes 1
2021-2022

A mostly wrong history of bridge building

(1) Once upon a time: bridge-building recipes

(2) Nowadays: Maths and physics to the rescue.

Calculuations: does it stand? is it resistant?

- What is a mathematical representation of a bridge?
- How do you go from the sketch to the model?
- How do you check for safety (it stands)?
- How do you check against attacks (ie. different scenario)?

Meanwhile, in computer science

(1) We have the recipes:

(2) What about the fancy science?

Meanwhile, in computer science

(1) We have the recipes:

(2) What about the fancy science? In its infancy!

Formal methods

Meanwhile, in computer science

(1) We have the recipes:

(2) What about the fancy science? In its infancy!

Formal methods
Semantics can make formal properties about programs:
"The program P computes factorial" $\leadsto \forall n \in \mathbb{N}, \llbracket P \rrbracket(n)=n!$.

The tradeoff of semantics

A model is a mathematical point of view: there are many models.
compromise Accuracy wrt reality

More abstract Easier to reason with, to prove properties.
More accurate Can state more properties.

Example 1 (Spectre)

Spectre is a recent attack using the branch prediction of processors.
(No current models cannot state the property: "This program is resistant to the Spectre attack".)

Static analysis

Definition 2

A static analysis is an algorithm to check whether a program has a certain property.

Example: does my C program make access to uninitialised variables?

```
int sum(int []array, int len) {
    int sum;
    for(int i = 0; i < len; i ++)
        sum = sum + array[i]; // wrong: access to uninitialised sum
}
```


Static analysis and approximation

There is a gap between the algorithm \mathscr{A} and the mathematical property \mathscr{P}.
A static analysis \mathscr{A} is:

- Sound when if \mathscr{A} says yes on a program p, then \mathscr{P} holds on p.
- Complete when if \mathscr{P} holds on p then \mathscr{A} says yes.

Static analysis and approximation

There is a gap between the algorithm \mathscr{A} and the mathematical property \mathscr{P}.
A static analysis \mathscr{A} is:

- Sound when if \mathscr{A} says yes on a program p, then \mathscr{P} holds on p.
- Complete when if \mathscr{P} holds on p then \mathscr{A} says yes.

The grail: an algorithm \mathscr{A} sound and complete.

Static analysis and approximation

There is a gap between the algorithm \mathscr{A} and the mathematical property \mathscr{P}.
A static analysis \mathscr{A} is:

- Sound when if \mathscr{A} says yes on a program p, then \mathscr{P} holds on p.
- Complete when if \mathscr{P} holds on p then \mathscr{A} says yes.

The grail: an algorithm \mathscr{A} sound and complete.

Theorem 3 (Rice)

If the programming language is Turing-complete, and \mathscr{P} is non-trivial, then there are no sound and complete algorithm for \mathscr{P}.

Static analysis and approximation

There is a gap between the algorithm \mathscr{A} and the mathematical property \mathscr{P}.
A static analysis \mathscr{A} is:

- Sound when if \mathscr{A} says yes on a program p, then \mathscr{P} holds on p.
- Complete when if \mathscr{P} holds on p then \mathscr{A} says yes.

The grail: an algorithm \mathscr{A} sound and complete.

Theorem 3 (Rice)

If the programming language is Turing-complete, and \mathscr{P} is non-trivial, then there are no sound and complete algorithm for \mathscr{P}.
\leadsto In practice: sound approximation.

Illustration of Rice's theorem

Theorem 4 (Consequence of Rice's theorem)

There is no algorithm sound and complete for uninitialised accesses in C.

Illustration of Rice's theorem

Theorem 4 (Consequence of Rice's theorem)

There is no algorithm sound and complete for uninitialised accesses in C.

Proof.

We show that if there were such an algorithm \mathscr{A} then we could decide whether a given piece of C code P terminates. This is impossible since C is Turing-complete.
Indeed, we can form the following C program

```
int x; // choose x not occurring in P
// Insert P here
int y = x;
```

This program has an uninitialised access iff P terminates.

This lecture (4h)

An illustration of the static analysis methodology:
(1) We isolate a subset of C called While: "prototypical imperative language"
(2) We formulate an algorithm that checks if a given program may perform uninitialised accessees

- To show it is sound, we need to define mathematically the property of having no uninitialised accesses.
\sim We give a semantics to While
(9) Using the semantics, we prove our algorithm sound.

Lecture 1: An introduction to verified static analysis

Detecting unitialised accesses in imperative programs

Outline

(1) While: An imperative toy language
(4) Natural semantics of While (5) Proof of the analysis (3) Operational semantics of While (6) Extensions of While

Idealising a language

Real life programming languages are complex. \leadsto The specification of the C language: 500 pages.

Idealising a language

Real life programming languages are complex. \leadsto The specification of the C language: 500 pages.

In semantics, we start a small set of features and grow over time.

Idealising a language

Real life programming languages are complex.
\leadsto The specification of the C language: 500 pages.
In semantics, we start a small set of features and grow over time.
The standard starting point, imperative programming:

- Variables (of type int)
- Assignments of arithmetic expressions (involving variables) to variables
- Conditionals on boolean expressions derived from variables
- While statements

We create an idealised language that combines this features, While.

The While language

```
\(n \in\) Num \(\quad x \in \operatorname{Var}\)
\(a \in \mathbf{A e x p}\)
\(a::=n|x| a_{1}+a_{2} \mid \ldots\)
\(b \in \operatorname{Bexp}\)
    \(b::=\) true \(\mid\) false \(\left|a_{1}=a_{2}\right| a_{1}>a_{2}\)
                        \(\mid\) not \(b \mid b_{1}\) and \(b_{2} \mid \ldots\)
\(c \in \mathbf{C m d}\)
c \(::=x:=a \mid\) skip \(\mid c_{1} ; c_{2}\)
    \(\mid\) if \(b\) then \(c_{1}\) else \(c_{2} \mid\) while \(b\) do \(c\)
```

integers and variables arithmetic expressions
boolean expressions
commands (i.e. programs)

This definition is called a BNF grammar:

- Different syntactic categories
- Certain basic categories are assumed: numbers, variables.
- Valid programs are described by abstract syntax trees (ASTs);

```
Example 5 (Factorial in While)
result:=1; while n>1 do (result := n * result; n := n -1).
```


Outline

(1) While: An imperative toy language
(2) A static analysis
(4) Natural semantics of While
(5) Proof of the analysis

6 Extensions of While

Overview of the algorithm

Our algorithm is a very simple case of liveness analysis.

- We say that a variable is safe when it has been initialised in the past.
- We build a partial function $\mathscr{S}: \mathbf{C m d} \times \mathscr{P}($ Var $) \rightharpoonup \mathscr{P}($ Var $)$

Overview of the algorithm

Our algorithm is a very simple case of liveness analysis.

- We say that a variable is safe when it has been initialised in the past.
- We build a partial function $\mathscr{S}: \mathbf{C m d} \times \mathscr{P}($ Var $) \rightharpoonup \mathscr{P}($ Var $)$:
- If $\mathscr{S}(c, X)$ is undefined: c makes uninitialised accesses outside X
- If $\mathscr{S}(c, X)=Y$: assuming variables in X are initialised, all accesses in c are initialised, and at the end variables in Y are initialised.

Overview of the algorithm

Our algorithm is a very simple case of liveness analysis.

- We say that a variable is safe when it has been initialised in the past.
- We build a partial function $\mathscr{S}: \mathbf{C m d} \times \mathscr{P}($ Var $) \rightharpoonup \mathscr{P}($ Var $):$
- If $\mathscr{S}(c, X)$ is undefined: c makes uninitialised accesses outside X
- If $\mathscr{S}(c, X)=Y$: assuming variables in X are initialised, all accesses in c are initialised, and at the end variables in Y are initialised.
- This partial function is defined by induction on c.

Overview of the algorithm

Our algorithm is a very simple case of liveness analysis.

- We say that a variable is safe when it has been initialised in the past.
- We build a partial function $\mathscr{S}: \mathbf{C m d} \times \mathscr{P}($ Var $) \rightharpoonup \mathscr{P}($ Var $):$
- If $\mathscr{S}(c, X)$ is undefined: c makes uninitialised accesses outside X
- If $\mathscr{S}(c, X)=Y$: assuming variables in X are initialised, all accesses in c are initialised, and at the end variables in Y are initialised.
- This partial function is defined by induction on c.
- We use notations:

$\{X\} c\{Y\}$	means	$\mathscr{S}(c, X)=Y$
$\{X\} c\{\perp\}$	means	$S(c, X)$ undef.
var	$:$	$(\mathbf{B e x p} \cup \mathbf{A e x p}) \rightarrow \mathscr{P}(\mathbf{V a r})$
$\operatorname{var}(x)$	$:=$	$\{x\}$
$\operatorname{var}(n)$	$:=$	\emptyset
$\operatorname{var}\left(e_{1}+e_{2}\right)$	$:=$	$\operatorname{var}\left(e_{1}\right) \cup \operatorname{var}\left(e_{2}\right)$

Static analysis: definition of \mathscr{S} (1)

We now give the cases for the inductive definition of \mathscr{S}

$$
\mathscr{S}(\text { skip }, X):=X
$$

Static analysis: definition of \mathscr{S} (1)

We now give the cases for the inductive definition of \mathscr{S}

$$
\begin{aligned}
& \mathscr{S}(\text { skip }, X):=X \\
& \mathscr{S}(x:=e, X):=\left\{\begin{array}{lr}
X \cup\{x\} & \text { if } \operatorname{var}(e) \subseteq X \\
\text { undef } & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Static analysis: definition of \mathscr{S} (1)

We now give the cases for the inductive definition of \mathscr{S}

$$
\begin{aligned}
& \mathscr{S}(\text { skip }, X):=X \\
& \mathscr{S}(x:=e, X):=\left\{\begin{array}{lr}
X \cup\{x\} & \text { if } \operatorname{var}(e) \subseteq X \\
\text { undef } & \text { otherwise }
\end{array}\right. \\
& \mathscr{S}\left(c ; c^{\prime}, X\right):=\left\{\begin{array}{lr}
Z & \{X\} c\{Y\} \wedge\{Y\} c^{\prime}\{Z\} \\
\text { undef } & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Static analysis: definition of \mathscr{S} (1)

We now give the cases for the inductive definition of \mathscr{S}

$$
\begin{aligned}
& \mathscr{S}(\text { skip }, X):=X \\
& \mathscr{S}(x:=e, X):=\left\{\begin{array}{lr}
X \cup\{x\} & \text { if } \operatorname{var}(e) \subseteq X \\
\text { undef } & \text { otherwise }
\end{array}\right. \\
& \mathscr{S}\left(c ; c^{\prime}, X\right):=\left\{\begin{array}{lr}
Z & \{X\} c\{Y\} \wedge\{Y\} c^{\prime}\{Z\} \\
\text { undef } & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Static analysis: definition of \mathscr{S} (2)

Static analysis: definition of \mathscr{S} (2)

$\mathscr{S}\left(\right.$ if b then c_{1} else $\left.c_{2}, X\right):=\left\{\begin{array}{lr}Y_{1} \cap Y_{2} & \operatorname{var}(b) \subseteq X \\ \text { undef } & \wedge\{X\} c_{1}\left\{Y_{1}\right\} \wedge\{X\} c_{2}\left\{Y_{2}\right\} \\ \text { otherwise }\end{array}\right.$

$$
\mathscr{S}(\text { while } b \text { do } c, X):=\left\{\begin{array}{lr}
X & \operatorname{var}(b) \subseteq X \wedge\{X\} c\{Y\} \\
\text { undef } & \text { otherwise }
\end{array}\right.
$$

Static analysis: definition of \mathscr{S} (2)

$$
\mathscr{S}\left(\text { if } b \text { then } c_{1} \text { else } c_{2}, X\right):=\left\{\begin{array}{lr}
Y_{1} \cap Y_{2} & \operatorname{var}(b) \subseteq X \\
& \wedge\{X\} c_{1}\left\{Y_{1}\right\} \wedge\{X\} c_{2}\left\{Y_{2}\right\} \\
\text { undef } & \text { otherwise }
\end{array}\right.
$$

$$
\mathscr{S}(\text { while } b \text { do } c, X):=\left\{\begin{array}{lr}
X & \operatorname{var}(b) \subseteq X \wedge\{X\} c\{Y\} \\
\text { undef } & \text { otherwise }
\end{array}\right.
$$

$$
\begin{aligned}
& \mathrm{x}=10 ; \\
& \text { while }(\mathrm{x}>0)\{\mathrm{y}=\mathrm{y}+1 ; \mathrm{x}=\mathrm{x}-1\}
\end{aligned}
$$

Static analysis: definition of \mathscr{S} (2)

$$
\mathscr{S}\left(\text { if } b \text { then } c_{1} \text { else } c_{2}, X\right):=\left\{\begin{array}{lr}
Y_{1} \cap Y_{2} & \operatorname{var}(b) \subseteq X \\
& \wedge\{X\} c_{1}\left\{Y_{1}\right\} \wedge\{X\} c_{2}\left\{Y_{2}\right\} \\
\text { undef } & \text { otherwise }
\end{array}\right.
$$

$$
\mathscr{S}(\text { while } b \text { do } c, X):=\left\{\begin{array}{lr}
X & \operatorname{var}(b) \subseteq X \wedge\{X\} c\{Y\} \\
\text { undef } & \text { otherwise }
\end{array}\right.
$$

$$
\begin{aligned}
& \mathrm{x}=10 ; \\
& \text { while }(\mathrm{x}>0)\{\mathrm{y}=\mathrm{y}+1 ; \mathrm{x}=\mathrm{x}-1\}
\end{aligned}
$$

```
\(\mathrm{x}=10\);
while \((x>0)\) \{ \(y=1 ; x=x-1\}\)
```


Static analysis: examples

- Our algorithm works on some examples: $\{\emptyset\} x:=1 ; z:=y\{\perp\}$
- However, our formula for the conditional is an approximation

$$
\{\emptyset\} \text { if true then } x:=1 \text { else } x:=y\{\perp\}
$$

however, this program does not do any uninitialised accesses since the else branch is never taken.

- To improve the analysis, we need to be able to guess better if a certain branch will never be taken.

Static analysis: examples

- Our algorithm works on some examples: $\{\emptyset\} x:=1 ; z:=y\{\perp\}$
- However, our formula for the conditional is an approximation

$$
\{\emptyset\} \text { if true then } x:=1 \text { else } x:=y\{\perp\}
$$

however, this program does not do any uninitialised accesses since the else branch is never taken.

- To improve the analysis, we need to be able to guess better if a certain branch will never be taken.
- We now would like to show this analysis is sound.
\leadsto How to formalise the property of having no uninitialised access?

Static analysis: examples

- Our algorithm works on some examples: $\{\emptyset\} x:=1 ; z:=y\{\perp\}$
- However, our formula for the conditional is an approximation

$$
\{\emptyset\} \text { if true then } x:=1 \text { else } x:=y\{\perp\}
$$

however, this program does not do any uninitialised accesses since the else branch is never taken.

- To improve the analysis, we need to be able to guess better if a certain branch will never be taken.
- We now would like to show this analysis is sound.
\leadsto How to formalise the property of having no uninitialised access?
For this, we need to define the semantics of While, i.e. how programs are executed.

Outline

(1) While: An imperative toy language

(4) Natural semantics of While

(5) Proof of the analysis
(3) Operational semantics of While
(6) Extensions of While

- Semantics of expressions
- Transition relation
- Overview
- Small-step transition relation, inductively

Different semantics of While

There are several ways of expressing the mathematical behaviour of a program, say fact $:=($ result $:=1$; while $(n>0)$ do result $:=\mathrm{n}$ * result; $\mathrm{n}--)$.

Informally:
(1) fact always terminates
(2) If n is equal to $k \in \mathbb{N}$ before the execution, at the end result $=k$!

Different semantics of While

There are several ways of expressing the mathematical behaviour of a program, say fact $:=($ result $:=1$; while $(n>0)$ do result $:=\mathrm{n}$ * result; $\mathrm{n}--)$.

Informally:
(1) fact always terminates
(2) If n is equal to $k \in \mathbb{N}$ before the execution, at the end result $=k$!

Different families of models based on memory states $\sigma \in \operatorname{Var} \rightarrow \mathbb{Z}$:

- Denotational: programs become functions on memory states.

$$
\llbracket P \rrbracket=\sigma \mapsto \sigma[\mathbf{n} \mapsto 1, \text { result } \mapsto \sigma(\mathrm{n})!]
$$

Different semantics of While

There are several ways of expressing the mathematical behaviour of a program, say fact $:=($ result $:=1$; while $(n>0)$ do result $:=\mathrm{n}$ * result; $\mathrm{n}--)$.

Informally:
(1) fact always terminates
(2) If n is equal to $k \in \mathbb{N}$ before the execution, at the end result $=k$!

Different families of models based on memory states $\sigma \in \operatorname{Var} \rightarrow \mathbb{Z}$:

- Denotational: programs become functions on memory states.

$$
\llbracket P \rrbracket=\sigma \mapsto \sigma[\mathbf{n} \mapsto 1, \text { result } \mapsto \sigma(\mathrm{n})!]
$$

- Axiomatic: programs become memory predicate transformers.

$$
\{\mathrm{n}=k\} P\{\mathrm{n}=1 \text { and result }=k!\}
$$

Different semantics of While

There are several ways of expressing the mathematical behaviour of a program, say fact $:=($ result $:=1$; while $(n>0)$ do result $:=\mathrm{n}$ * result; $\mathrm{n}--)$.

Informally:
(1) fact always terminates
(2) If n is equal to $k \in \mathbb{N}$ before the execution, at the end result $=k$!

Different families of models based on memory states $\sigma \in \operatorname{Var} \rightarrow \mathbb{Z}$:

- Denotational: programs become functions on memory states.

$$
\llbracket P \rrbracket=\sigma \mapsto \sigma[\mathbf{n} \mapsto 1, \text { resul } \mathrm{t} \mapsto \sigma(\mathrm{n})!]
$$

- Axiomatic: programs become memory predicate transformers.

$$
\{\mathrm{n}=k\} P\{\mathrm{n}=1 \text { and result }=k!\}
$$

- Operational: programs are executed by a mathematical machine.

$$
(P, \sigma) \rightarrow^{*} \sigma[\mathrm{n} \mapsto 1, \text { result } \mapsto \sigma(\mathrm{n})!]
$$

Different semantics of While

There are several ways of expressing the mathematical behaviour of a program, say fact $:=($ result $:=1$; while $(n>0)$ do result $:=\mathrm{n}$ * result; $\mathrm{n}--)$.

Informally:
(1) fact always terminates
(2) If n is equal to $k \in \mathbb{N}$ before the execution, at the end result $=k$!

Different families of models based on memory states $\sigma \in \operatorname{Var} \rightarrow \mathbb{Z}$:

- Denotational: programs become functions on memory states.

$$
\llbracket P \rrbracket=\sigma \mapsto \sigma[\mathbf{n} \mapsto 1, \text { resul } \mathrm{t} \mapsto \sigma(\mathrm{n})!]
$$

- Axiomatic: programs become memory predicate transformers.

$$
\{\mathrm{n}=k\} P\{\mathrm{n}=1 \text { and result }=k!\}
$$

- Operational: programs are executed by a mathematical machine.

$$
(P, \sigma) \rightarrow^{*} \sigma[\mathrm{n} \mapsto 1, \text { result } \mapsto \sigma(\mathrm{n})!]
$$

Different semantics of While

There are several ways of expressing the mathematical behaviour of a program, say fact $:=($ result $:=1$; while $(n>0)$ do result $:=\mathrm{n}$ * result; $\mathrm{n}--)$.

Informally:
(1) fact always terminates
(2) If n is equal to $k \in \mathbb{N}$ before the execution, at the end result $=k$!

Different families of models based on memory states $\sigma \in \operatorname{Var} \rightarrow \mathbb{Z}$:

- Denotational: programs become functions on memory states.

$$
\llbracket P \rrbracket=\sigma \mapsto \sigma[\mathbf{n} \mapsto 1, \text { resul } \mathrm{t} \mapsto \sigma(\mathrm{n})!]
$$

- Axiomatic: programs become memory predicate transformers.

$$
\{\mathrm{n}=k\} P\{\mathrm{n}=1 \text { and result }=k!\}
$$

- Operational: programs are executed by a mathematical machine.

$$
(P, \sigma) \rightarrow^{*} \sigma[\mathrm{n} \mapsto 1, \text { result } \mapsto \sigma(\mathrm{n})!]
$$

Operational semantics: References

References

- G. Winskel, The Formal Semantics of Programming Languages MIT Press, 1993 (chapters 2 and 3)
- H.R. Nielson and F. Nielson, Semantics with Applications - A Formal Introduction, Wiley 1992. (chapter 2)
- G. Plotkin, A Structural Approach to Operational Semantics, Technical Report, Aarhus University, 1981.
- G. Kahn, Natural Semantics, In Proc. of the Symposium on Theoretical Aspects of Computer Science, LNCS 247, pp. 22-39, Springer-Verlag, 1987.

Interpretation of values

Define the sets and functions used to describe the meaning of expressions.

- Values : integers and booleans

$$
\mathbb{Z} \quad \mathbb{B}=\{\mathbf{t t}, \mathbf{f f}\}
$$

- Interpretation function for constants

$$
\mathcal{N} \in \operatorname{Num} \rightarrow \mathbb{Z}
$$

- A memory state or environment, σ maps variables to values

$$
\sigma \in \text { State }=\text { Var } \rightarrow \mathbb{Z}
$$

Reading the value of variable x in σ

$$
\begin{gathered}
\sigma(x) \\
\sigma^{\prime}=\sigma[x \mapsto v]
\end{gathered}
$$

- Semantics of expressions

$$
\mathcal{A} \in \mathbf{A} \exp \rightarrow \text { State } \rightarrow \mathbb{Z} \quad \mathcal{B} \in \mathbf{B e x p} \rightarrow \text { State } \rightarrow \mathbb{B}
$$

Expressions denote functions from states to integer values.
Notation: $\mathcal{A}(a)(\sigma)$ traditionally written $\mathcal{A} \llbracket a \rrbracket \sigma$.

Arithmetic expressions

Remember: The set of arithmetic expressions is defined inductively

$$
a \in \boldsymbol{\operatorname { A e x p }}::=n|x| a_{1}+a_{2} \mid \ldots
$$

$\mathcal{A} \llbracket . \rrbracket$ is defined by induction on the definition of Aexp, following the structure of expressions.

$$
\begin{array}{ll}
\mathcal{A} \in \operatorname{Aexp} \rightarrow & \text { State } \rightarrow \mathbb{Z} \\
\mathcal{A} \llbracket n \rrbracket \sigma & =\mathcal{N} \llbracket n \rrbracket \\
\mathcal{A} \llbracket x \rrbracket \sigma & =\sigma(x) \\
\mathcal{A} \llbracket a_{1}+a_{2} \rrbracket \sigma & =\mathcal{A} \llbracket a_{1} \rrbracket \sigma+\mathcal{A} \llbracket a_{2} \rrbracket \sigma
\end{array}
$$

Note: + is the syntactic operator, + is the sum operator defined on integers.
The semantics is compositional: the meaning of a syntactic construction is defined from the meaning of its constituent parts.

Boolean expressions

Similarly, define $\mathcal{B} \llbracket . \rrbracket$ by induction on the definition of Bexp.

$$
\begin{array}{ll}
\mathcal{B} \in \text { Bexp } \rightarrow \text { State } \rightarrow \mathbb{B} \\
\mathcal{B} \llbracket \text { true } \rrbracket \sigma & =\mathbf{t t} \\
\mathcal{B} \llbracket \text { false } \rrbracket \sigma & =\mathbf{f f} \\
\mathcal{B} \llbracket a_{1}=a_{2} \rrbracket \sigma & =\mathcal{A} \llbracket a_{1} \rrbracket \sigma=\mathcal{A} \llbracket a_{2} \rrbracket \sigma \\
\mathcal{B} \llbracket a_{1}<a_{2} \rrbracket \sigma & =\mathcal{A} \llbracket a_{1} \rrbracket \sigma<\mathcal{A} \llbracket a_{2} \rrbracket \sigma \\
\mathcal{B} \llbracket \text { not } b \rrbracket \sigma & =\neg(\mathcal{B} \llbracket b \rrbracket \sigma) \\
\mathcal{B} \llbracket b_{1} \text { and } b_{2} \rrbracket \sigma & =\mathcal{B} \llbracket b_{1} \rrbracket \sigma \wedge \mathcal{B} \llbracket b_{2} \rrbracket \sigma
\end{array}
$$

where $\neg, \wedge,=$ are operators defined on booleans and integers.

Proof technique

The set of arithmetic expressions Aexp is defined inductively

$$
a::=n|x| a_{1}+a_{2} \mid \ldots
$$

Structural induction

To prove a property \mathcal{P} of all arithmetic expressions:
(1) Base cases: show the property for each atomic expression
(2) Inductive cases : show the property for each composite expression, under the hypothesis that it holds on its constituent parts.

Formally, the induction principle for arithmetic expressions is :

$$
\left.\begin{array}{ll}
& \forall n \in \operatorname{Num}, \mathcal{P}(n) \\
\wedge & \forall x \in \operatorname{Var}, \mathcal{P}(x) \\
\wedge & \forall a_{1}, a_{2} \in \operatorname{Aexp}, \mathcal{P}\left(a_{1}\right) \wedge \mathcal{P}\left(a_{2}\right) \Rightarrow \mathcal{P}\left(a_{1}+a_{2}\right)
\end{array}\right\} \Rightarrow \forall a \in \operatorname{Aexp}, \mathcal{P}(a)
$$

Vocabulary: the above $\mathcal{P}\left(a_{1}\right)$ and $\mathcal{P}\left(a_{2}\right)$ are called the induction hypotheses.

Exercises
 Exercise 3.1

Let $\sigma \in$ State and $x \in \operatorname{Var}$ such that $\sigma(x)=3$. Show that $\mathcal{B} \llbracket \operatorname{not}(\mathbf{x}=\mathbf{1}) \rrbracket \sigma=\mathbf{t t}$.

Exercise 3.2

We extend the language $\mathbf{A} \exp$ with the unary minus operator and the construction -a. Extend the semantic function \mathcal{A} to give a compositional semantics for this construction.

Exercise 3.3

We extend the language Bexp with the construction b_{1} or b_{2}.

- Extend the semantic function \mathcal{B} to give a compositional semantics for this construction.
- Prove that for all \bar{b} belonging to the extended language there exists a b belonging to the original language such that:

$$
\mathcal{B} \llbracket b \rrbracket=\mathcal{B} \llbracket \bar{b} \rrbracket
$$

Operational semantics: Transition systems

Describe how the execution of While programs is done, operationally.
The operational semantics of a language is defined by an abstract machine, formalised as a transition system.

Transition system

A transition system is a triple (Γ, T, \leadsto) where

- Γ is a set of configurations (states of the machine)
- $T \subseteq \Gamma$ is a set of final configurations
- $\sim \subseteq \Gamma \times \Gamma$ is a transition relation

Two main styles of definitions for the transition relation:

- Small-step semantics Structural Operational Semantics (SOS) Relation \rightarrow describes all intermediate, individual steps
- Big-step semantics Natural semantics (NS) Relation \Downarrow describes how to obtain the final result of computation

Transition systems: some definitions Transition system

A transition system is a triple (Γ, T, \leadsto) where

- Γ is a set of configurations
- $T \subseteq \Gamma$ is a set of final configurations
- $\leadsto \subseteq \Gamma \times \Gamma$ is a transition relation

A transition system (Γ, T, \leadsto) is said

- deterministic when relation \leadsto is functional

$$
\gamma \leadsto \gamma_{1} \text { and } \gamma \leadsto \gamma_{2} \text { implies } \gamma_{1}=\gamma_{2}
$$

- non-blocking when relation \leadsto is total on $\Gamma \backslash T$

$$
\text { for all } \gamma \in \Gamma \backslash T \text {, there exists } \gamma^{\prime} \text { such that } \gamma \leadsto \gamma^{\prime}
$$

The notion of program execution will be defined on top of \leadsto.

Transition systems for While: configurations

To run a While program, we need a command $c \in \mathbf{C m d}$, and a state $\sigma \in$ State.
For While, configurations are defined:

- $\Gamma=\{(c, \sigma) \mid c \in \mathbf{C m d}, \sigma \in$ State $\} \cup$ State
- Final configurations : $T=$ State

So, either :

- $(c, \sigma) \sim\left(c^{\prime}, \sigma^{\prime}\right)$ execution of c has not terminated, and $\left(c^{\prime}, \sigma^{\prime}\right)$ is left to execute
- or $(c, \sigma) \sim \sigma^{\prime}$ execution of c has terminated in the final configuration σ^{\prime}

Next slides: define two transition relations, following the structure of While commands

Small-step transition relation

```
Cmd \(\ni \subset::=x:=a \mid\) skip \(\mid c_{1} ; c_{2}\)
    \(\mid\) if \(b\) then \(c_{1}\) else \(c_{2} \mid\) while \(b\) do \(c\)
```

Easy for atomic commands:

- Executing skip terminates in 1 step and doesn't modify the state. For all possible σ, we have (skip , σ) $\rightarrow \sigma$
- Executing an assignment terminates in 1 step, and updates the state. For all possible σ, x, and a, we have $(x:=a, \sigma) \rightarrow \sigma[x \mapsto \mathcal{A} \llbracket a \rrbracket \sigma]$

For compound commands, like sequences ?

$$
\left(c_{1} ; c_{2}, \sigma\right) \rightarrow ? ? ?
$$

Intuitively, we have to first execute c_{1} in small-step.

- The transition relation needs to be defined inductively!

Small-step transition relation, inductively

Inductively defined relations are usually formalised by a rule system.
A rule is of the form :

$$
\text { RuleName } \quad \text { if } \ldots \text { (side conditions }) \frac{\text { premise }_{1} \quad \ldots \quad \text { premise }_{n}}{\text { conclusion }}
$$

where premise $_{i}$ and conclusion are elements of the relation being defined. ${ }^{1}$
It reads: "If premise $_{1}$ and \ldots premise $_{n}$, and if side conditions are satisfied, then conclusion". Premises must be, in turn, justified by rules.

- the conclusion holds whenever there is a finite derivation tree whose leaves are axioms of the system.

For the transition relation \leadsto, rules are of the form:

$$
\text { RuleName } \quad \text { if } \ldots(\text { side conditions }) \frac{\gamma_{0} \leadsto \gamma_{0}^{\prime} \quad \ldots \quad \gamma_{i} \leadsto \gamma_{i}^{\prime}}{\gamma_{j} \leadsto \gamma_{j}^{\prime}}
$$

${ }^{1} \mathrm{~A}$ rule with no premise is called an axiom.

Structural operational semantics (SOS)

Rule system defining the small-step transition relation.
Precisely: these are rule schemas, to be instantiated on particular commands and states.

$$
\begin{aligned}
& \text { ASSIG } \begin{array}{l}
(x:=a, \sigma) \rightarrow \sigma[x \mapsto \mathcal{A} \llbracket a \rrbracket \sigma]
\end{array} \quad \text { SKIP } \frac{\left(c_{1}, \sigma\right) \rightarrow \sigma^{\prime}}{\left(c_{1} ; c_{2}, \sigma\right) \rightarrow\left(c_{2}, \sigma^{\prime}\right)} \quad \text { SEQ2 } \frac{\left(c_{1}, \sigma\right) \rightarrow\left(c_{1}^{\prime}, \sigma^{\prime}\right)}{\left(c_{1} ; c_{2}, \sigma\right) \rightarrow\left(c_{1}^{\prime} ; c_{2}, \sigma^{\prime}\right)} \\
& \text { SEQ1 } \frac{\text { skip })}{} \\
& \text { IFT } \quad \text { if } \mathcal{B} \llbracket b \rrbracket \sigma=\mathbf{t t} \frac{\left(\text { if } b \text { then } c_{1} \text { else } c_{2}, \sigma\right) \rightarrow\left(c_{1}, \sigma\right)}{\left(\text { if } b \text { then } c_{1} \text { else } c_{2}, \sigma\right) \rightarrow\left(c_{2}, \sigma\right)} \\
& \text { IFE } \quad \text { if } \mathcal{B} \llbracket b \rrbracket \sigma=\mathbf{f f} \frac{(\text { while } b \text { do } c, \sigma) \rightarrow(\text { if } b \text { then }(c ; \text { while } b \text { do } c) \text { else skip }, \sigma)}{\text { WHI }}
\end{aligned}
$$

Small-step executions and semantics

A small-step execution of a While command is a sequence of configurations

$$
\gamma_{0}, \ldots, \gamma_{p}, \ldots \text { such that, for each } i, \gamma_{i} \rightarrow \gamma_{i+1}
$$

We write :
\rightarrow^{*} Reflexive and transitive closure of \rightarrow : finite number of transitions
\rightarrow^{+}Transitive closure of \rightarrow : finite, non-zero number of transitions
$\rightarrow{ }^{i}$ Exactly i transitions

Execution of (c, σ) is said

- to terminate iff there exists σ^{\prime} such that $(c, \sigma) \rightarrow^{*} \sigma^{\prime}$
- to loop iff there exists an infinite transition sequence starting from (c, σ)

Exercises

Exercise 3.4 (In class)

Show that for all σ with $\sigma(n) \geqslant 1$:

$$
(P, \sigma) \rightarrow^{*} \sigma^{\prime}
$$

with $\sigma^{\prime}(\mathrm{result})=\sigma(n)!$ where P is the factorial program.

Exercise 3.5 (At home)

Give an SOS to the arithmetic expressions (Aexp) of the While language. Is your corresponding transition system deterministic? Explain why.

Proving our static analysis correct

We want to show:

```
Theorem 6
If our algorithm says yes, then the program does not access unitialised references.
```

How to formalise:
(1) "If our algorithm says yes"
(2) "The program does not access unitialised references."

Proving our static analysis correct

We want to show:

```
Theorem 6
If our algorithm says yes, then the program does not access unitialised references.
```

How to formalise:
(1) "If our algorithm says yes"
(2) "The program does not access unitialised references."

Proving our static analysis correct

We want to show:
Theorem 6
If our algorithm says yes, then the program does not access unitialised references.

How to formalise:
(1) "If our algorithm says yes"

$$
\mathscr{S}(P, \emptyset)=Y
$$

(2) "The program does not access unitialised references."

Proving our static analysis correct

We want to show:

Theorem 6

If our algorithm says yes, then the program does not access unitialised references.

How to formalise:
© "If our algorithm says yes"

$$
\mathscr{S}(P, \emptyset)=Y
$$

(2) "The program does not access unitialised references."

$$
\left.\left(P, \sigma_{1}\right) \rightarrow^{*} \sigma_{1}^{\prime} \wedge\left(P, \sigma_{2}\right) \rightarrow^{*} \sigma_{2}^{\prime} \Rightarrow \sigma_{1}^{\prime}\right|_{Y}=\left.\sigma_{2}^{\prime}\right|_{Y}
$$

The final memory state does not depend on the input state.

Proving our static analysis correct

We want to show:

Theorem 6

If our algorithm says yes, then the program does not access unitialised references.

How to formalise:
© "If our algorithm says yes"

$$
\mathscr{S}(P, \emptyset)=Y
$$

(2) "The program does not access unitialised references."

$$
\left.\left(P, \sigma_{1}\right) \rightarrow^{*} \sigma_{1}^{\prime} \wedge\left(P, \sigma_{2}\right) \rightarrow^{*} \sigma_{2}^{\prime} \quad \Rightarrow \quad \sigma_{1}^{\prime}\right|_{Y}=\left.\sigma_{2}^{\prime}\right|_{Y}
$$

The final memory state does not depend on the input state. \leadsto Problem: reasoning on \rightarrow^{*} is tedious. Define the final state directly?

Outline

(1) While: An imperative toy language
(2) A static analysis
(3) Operational semantics of While

4 Natural semantics of While
(5) Proof of the analysis

6 Extensions of While

Forgetting the intermediate steps

Our semantics allows to view commands as state transformers:

Definition 7

Command c turns state σ into state σ^{\prime} when $(c, \sigma) \rightarrow^{*} \sigma^{\prime}$. We write $\langle c, \sigma\rangle \Downarrow \sigma^{\prime}$.

Can we define the relation $\langle c, \sigma\rangle \Downarrow \sigma^{\prime}$ directly (by induction)?
\leadsto Yes: it is called natural semantics.

Natural (or big-step) semantics (NS)

Rule system defining the big-step transition relation.
Focuses on final state reached: no elementary computation step described. So, the transition relation is such that $\Downarrow \subseteq(\mathbf{C m d} \times \mathbf{S t a t e}) \times \mathbf{S t a t e} \subseteq \Gamma \times T$

ASSIG $\overline{(x:=a, \sigma) \Downarrow \sigma[x \mapsto \mathcal{A} \llbracket a \rrbracket \sigma]}$
$\operatorname{SEQ} \frac{\left(S_{1}, \sigma\right) \Downarrow \sigma^{\prime} \quad\left(S_{2}, \sigma^{\prime}\right) \Downarrow \sigma^{\prime \prime}}{\left(S_{1} ; S_{2}, \sigma\right) \Downarrow \sigma^{\prime \prime}}$
IFT if $\mathcal{B} \llbracket b \rrbracket \sigma=\mathbf{t t} \frac{\left(S_{1}, \sigma\right) \Downarrow \sigma^{\prime}}{\left(\text { if } b \text { then } S_{1} \text { else } S_{2}, \sigma\right) \Downarrow \sigma^{\prime}}$

IFE \quad if $\mathcal{B} \llbracket b \rrbracket \sigma=\mathbf{f f} \frac{\left(S_{2}, \sigma\right) \Downarrow \sigma^{\prime}}{\left(\text { if } b \text { then } S_{1} \text { else } S_{2}, \sigma\right) \Downarrow \sigma^{\prime}}$
WHI1 if $\mathcal{B} \llbracket b \rrbracket \sigma=\mathbf{t t} \frac{(S, \sigma) \Downarrow \sigma^{\prime} \quad\left(\text { while } b \text { do } S, \sigma^{\prime}\right) \Downarrow \sigma^{\prime \prime}}{(\text { while } b \text { do } S, \sigma) \Downarrow \sigma^{\prime \prime}}$
WHI2

$$
\text { if } \mathcal{B} \llbracket b \rrbracket \sigma=\mathrm{ff} \overline{(\text { while } b \text { do } S, \sigma) \Downarrow \sigma}
$$

Big-step executions and semantics

A big-step execution of a While command is simply a derivable $(c, \sigma) \Downarrow \sigma^{\prime}$
Execution of (c, σ) is said

- to terminate iff there exists σ^{\prime} such that $(c, \sigma) \Downarrow \sigma^{\prime}$
- to loop/block iff there is no state σ^{\prime} such that $(c, \sigma) \Downarrow \sigma^{\prime}$

Semantics of commands: partial function $\mathcal{S}_{\text {nat }} \in \mathbf{C m d} \rightarrow$ State \hookrightarrow State

$$
\mathcal{S}_{\text {nat }} \llbracket c \rrbracket \sigma=\sigma^{\prime} \quad \text { if }(c, \sigma) \Downarrow \sigma^{\prime}
$$

Commands c_{1} and c_{2} are semantically equivalent iff

$$
\forall \sigma, \sigma^{\prime} .\left(c_{1}, \sigma\right) \Downarrow \sigma^{\prime} \Leftrightarrow\left(c_{2}, \sigma\right) \Downarrow \sigma^{\prime}
$$

Exercises

Exercise 4.1

Show that the NS semantics of the factorial program gives the expected behaviour.

Exercise 4.2 (At home)

The While language is extended with the construction repeat S until b. Extend the NS accordingly.

Proof technique associated with NS

Induction principle for derivation trees

(1) Prove the property for the the axioms of the rule system
(2) For each rule, prove the property for the conclusion of the rule, under the hypothesis that the property holds for each of the premises, and that side conditions are satisfied.

Intuition: the property is proved:

- to hold for the leaves of the tree,
- and to propagate to any possible derivable conclusion.

Exercises

Exercise 4.3 (At home)

Prove that the NS of While is deterministic.

Exercise 4.4 (At home)

Prove that $c_{1} ;\left(c_{2} ; c_{3}\right)$ and $\left(c_{1} ; c_{2}\right) ; c_{3}$ are semantically equivalent. Hint: induction is not necessary here.

Exercise 4.5 (At home *)

Prove that
while b do c
and
if b then (c; while b do c) else skip
are semantically equivalent. Hint: induction is not necessary here.

An equivalence of two semantics

Theorem

For all c and all σ, we have $\langle c, \sigma\rangle \rightarrow^{*} \sigma^{\prime}$ iff $\langle c, \sigma\rangle \Downarrow \sigma^{\prime}$.

The theorem is a direct consequence of the following two lemmas:

Lemma 8

For all command c and states σ, σ^{\prime}

$$
(c, \sigma) \Downarrow \sigma^{\prime} \Rightarrow(c, \sigma) \rightarrow^{*} \sigma^{\prime}
$$

Lemma 9

For all command c and states σ, σ^{\prime}

$$
(c, \sigma) \rightarrow^{k} \sigma^{\prime} \Rightarrow(c, \sigma) \Downarrow \sigma^{\prime}
$$

Proof of Lemma 8

Goal: for all command c and states $\sigma, \sigma^{\prime}(c, \sigma) \Downarrow \sigma^{\prime} \Rightarrow(c, \sigma) \rightarrow^{*} \sigma^{\prime}$.

By induction on the derivation tree of $(S, \sigma) \Downarrow \sigma^{\prime}$.
Case $(x:=a, \sigma) \Downarrow \sigma[x \mapsto \mathcal{A} \llbracket a \rrbracket \sigma]$
Immediate from the SOS axiom $(x:=a, \sigma) \rightarrow \sigma[x \mapsto \mathcal{A} \llbracket a \rrbracket \sigma]$
Case

$$
\frac{\left(S_{1}, \sigma\right) \Downarrow \sigma^{\prime} \quad\left(S_{2}, \sigma^{\prime}\right) \Downarrow \sigma^{\prime \prime}}{\left(S_{1} ; S_{2}, \sigma\right) \Downarrow \sigma^{\prime \prime}}
$$

Thus
$\left(S_{1}, \sigma\right) \rightarrow^{*} \sigma^{\prime}$ and $\left(S_{2}, \sigma^{\prime}\right) \rightarrow^{*} \sigma^{\prime \prime} \quad$ (by induction hypothesis)
$\left(S_{1} ; S_{2}, \sigma\right) \rightarrow^{*}\left(S_{2}, \sigma^{\prime}\right)$
$\left(S_{1} ; S_{2}, \sigma\right) \rightarrow^{*} \sigma^{\prime \prime} \quad$ (by composition of transition sequences)

Proof of Lemma 8

Case
WHI1 $\quad b / c \mathcal{B} \llbracket b \rrbracket \sigma=\mathbf{t t} \frac{(S, \sigma) \Downarrow \sigma^{\prime} \quad\left(\text { while } b \text { do } S, \sigma^{\prime}\right) \Downarrow \sigma^{\prime \prime}}{(\text { while } b \text { do } S, \sigma) \Downarrow \sigma^{\prime \prime}}$
The induction hypothesis gives us that

$$
(S, \sigma) \rightarrow^{*} \sigma^{\prime} \quad \text { and } \quad\left(\text { while } b \text { do } S, \sigma^{\prime}\right) \rightarrow^{*} \sigma^{\prime \prime}
$$

According to the SOS, we have the following derivation:

$$
\begin{aligned}
(\text { while } b \text { do } S, \sigma) & \rightarrow(\text { if } b \text { then }(S ; \text { while } b \text { do } S) \text { else skip }, \sigma) \\
& \rightarrow(S ; \text { while } b \text { do } S, \sigma)
\end{aligned}
$$

Composing the transition sequences, we obtain

$$
(\text { while } b \text { do } S, \sigma) \rightarrow^{*} \sigma^{\prime \prime}
$$

Other cases same idea (exercise)

Proof of Lemma 9

Goal: for all $S, \sigma, k, \sigma^{\prime},(S, \sigma) \rightarrow^{k} \sigma^{\prime} \Rightarrow(S, \sigma) \Downarrow \sigma^{\prime}$.

Proceed by induction on the length of the transition sequence of $(S, \sigma) \rightarrow^{k} \sigma^{\prime}$:

- If $k=0$ then (S, σ) and σ^{\prime} should be identical. Vacuously holds.
- Otherwise, suppose the lemma holds for all $k \leqslant k_{0}$ and prove it for a sequence of length $k_{0}+1$. We proceed by case analysis on the command S :

Case $x:=a$. This command reduces in one step to a final state (so $k_{0}=0$) by SOS axiom ASSIG. Result then follows from NS axiom ASSIG.

Proof of Lemma 9

Case $\left(S_{1} ; S_{2}, \sigma\right) \rightarrow^{k_{0}+1} \sigma^{\prime \prime}$
There exists k_{1} and k_{2} such that

$$
\left(S_{1}, \sigma\right) \rightarrow^{k_{1}} \sigma^{\prime} \quad \text { and } \quad\left(S_{2}, \sigma^{\prime}\right) \rightarrow^{k_{2}} \sigma^{\prime \prime} \quad \text { with } k_{1}+k_{2}=k_{0}+1
$$

By induction hypothesis,

$$
\left(S_{1}, \sigma\right) \Downarrow \sigma^{\prime} \quad \text { and } \quad\left(S_{2}, \sigma^{\prime}\right) \Downarrow \sigma^{\prime \prime}
$$

By the NS rule SEQ, we conclude that $\left(S_{1} ; S_{2}, \sigma\right) \Downarrow \sigma^{\prime \prime}$.
Case (while b do S, σ)
$\rightarrow\left(\right.$ if b then (S; while b do S) else skip , σ) $\rightarrow^{k_{0}} \sigma^{\prime \prime}$
From the induction hypothesis, we get
(if b then (S; while b do S) else skip , σ) $\Downarrow \sigma^{\prime \prime}$
In Exercise 4.5, we proved this command semantically equivalent to while b do S, hence (while b do S, σ) $\Downarrow \sigma^{\prime \prime}$.
Other cases same technique

Outline

(1) While: An imperative toy language
(2) A static analysis
(4) Natural semantics of While
(5) Proof of the analysis

Theorem 10

Consider a program P with $\{\emptyset\} P\{X\}$. For any states $\sigma_{1}, \sigma_{1}^{\prime}, \sigma_{2}, \sigma_{2}^{\prime}, i f$:

$$
\left\langle P, \sigma_{1}\right\rangle \Downarrow \sigma_{1}^{\prime} \quad\left\langle P, \sigma_{2}\right\rangle \Downarrow \sigma_{2}^{\prime}
$$

then

$$
\left.\sigma_{2}^{\prime}\right|_{Y}=\left.\sigma_{2}^{\prime}\right|_{Y}
$$

Theorem 10

Consider a program P with $\{\emptyset\} P\{X\}$. For any states $\sigma_{1}, \sigma_{1}^{\prime}, \sigma_{2}, \sigma_{2}^{\prime}, i f$:

$$
\left\langle P, \sigma_{1}\right\rangle \Downarrow \sigma_{1}^{\prime} \quad\left\langle P, \sigma_{2}\right\rangle \Downarrow \sigma_{2}^{\prime}
$$

then

$$
\left.\sigma_{2}^{\prime}\right|_{Y}=\left.\sigma_{2}^{\prime}\right|_{Y}
$$

Proof.

By induction on P.

Theorem 10

Consider a program P with $\{\emptyset\} P\{X\}$. For any states $\sigma_{1}, \sigma_{1}^{\prime}, \sigma_{2}, \sigma_{2}^{\prime}, i f$:

$$
\left\langle P, \sigma_{1}\right\rangle \Downarrow \sigma_{1}^{\prime} \quad\left\langle P, \sigma_{2}\right\rangle \Downarrow \sigma_{2}^{\prime}
$$

then

$$
\left.\sigma_{2}^{\prime}\right|_{Y}=\left.\sigma_{2}^{\prime}\right|_{Y}
$$

Proof.

By induction on P.

- When $P=(x:=e)$. By definition of \mathscr{S}, we know that e must be constant and $Y=X \cup\{x\}$. Since e is a constant, $\llbracket e \rrbracket\left(\sigma_{1}\right)=\llbracket e \rrbracket\left(\sigma_{2}\right)=n$ and we have $\sigma_{1}^{\prime}(x)=\sigma_{2}^{\prime}(x)=n$ as desired.
- $P=P_{1} ; P_{2}$. By assumption $\{\emptyset\} P_{1}\left\{X_{0}\right\}$ and $\left\{X_{0}\right\} P_{2}\{X\}$. How to apply induction hypothesis to P_{2} ?

Theorem 10

Consider a program P with $\{\emptyset\} P\{X\}$. For any states $\sigma_{1}, \sigma_{1}^{\prime}, \sigma_{2}, \sigma_{2}^{\prime}, i f$:

$$
\left\langle P, \sigma_{1}\right\rangle \Downarrow \sigma_{1}^{\prime} \quad\left\langle P, \sigma_{2}\right\rangle \Downarrow \sigma_{2}^{\prime}
$$

then

$$
\left.\sigma_{2}^{\prime}\right|_{Y}=\left.\sigma_{2}^{\prime}\right|_{Y}
$$

Proof.

By induction on P.

- When $P=(x:=e)$. By definition of \mathscr{S}, we know that e must be constant and $Y=X \cup\{x\}$. Since e is a constant, $\llbracket e \rrbracket\left(\sigma_{1}\right)=\llbracket e \rrbracket\left(\sigma_{2}\right)=n$ and we have $\sigma_{1}^{\prime}(x)=\sigma_{2}^{\prime}(x)=n$ as desired.
- $P=P_{1} ; P_{2}$. By assumption $\{\emptyset\} P_{1}\left\{X_{0}\right\}$ and $\left\{X_{0}\right\} P_{2}\{X\}$. How to apply induction hypothesis to P_{2} ?

Solution: we need to strengthen the induction hypothesis.

Proof of the analysis: (2)

We need a statement that matches the definition of \mathscr{S}.

Proof of the analysis: (2)

We need a statement that matches the definition of \mathscr{S}.

Theorem 11

Consider a program P with $\{X\} P\{Y\}$. For any states $\sigma_{1}, \sigma_{1}^{\prime}, \sigma_{2}, \sigma_{2}^{\prime}$ with $\left.\sigma_{1}\right|_{X}=\left.\sigma_{2}\right|_{X}$, if:

$$
\left\langle P, \sigma_{1}\right\rangle \Downarrow \sigma_{1}^{\prime} \quad\left\langle P, \sigma_{2}\right\rangle \Downarrow \sigma_{2}^{\prime}
$$

then

$$
\left.\sigma_{2}^{\prime}\right|_{\zeta}=\left.\sigma_{2}^{\prime}\right|_{\gamma}
$$

Outline

(1) While: An imperative toy language
2) A static analysis
(3) Operational semantics of While

(4) Natural semantics of While

(5) Proof of the analysis
(6) Extensions of While

Extension of While (1) : termination operator

We extend the While language with the command abort .
Informal description: the command halts execution of the program.
One way of modeling abort : semantic rules stay unchanged and the configurations of form (abort,σ) are blocking.

- SOS: abort is different from skip and from while true do skip.
- NS: abort is different from skip but equivalent to while true do skip.

One solution that allows the NS to distinguish between termination by abort and non-termination: introduce special state $\sigma_{a b o r t}$ and

$$
(\text { abort }, \sigma) \Downarrow \sigma_{a b o r t}
$$

But: must modify all other rules to take $\sigma_{\text {abort }}$ into account!

Extensions to While (2) : non-deterministic choice

Extend While with the non-deterministic choice operator $c_{1} \square c_{2}$.
Informal description: choose non-deterministically to execute one of c_{1} and c_{2}.
The language now becomes non-deterministic.

- Formalisation as an SOS

CH1 $\xrightarrow[\left(c_{1} \square c_{2}, \sigma\right) \rightarrow\left(c_{1}, \sigma\right)]{ }$
CH2 $\underset{\left(c_{1} \square c_{2}, \sigma\right) \rightarrow\left(c_{2}, \sigma\right)}{ }$

- Formalisation as a NS

$$
\begin{aligned}
& \mathrm{CH} 1 \frac{\left(c_{1}, \sigma\right) \Downarrow \sigma^{\prime}}{\left(c_{1} \square c_{2}, \sigma\right) \Downarrow \sigma^{\prime}} \\
& \mathrm{CH} 2 \frac{\left(c_{2}, \sigma\right) \Downarrow \sigma^{\prime}}{\left(c_{1} \square c_{2}, \sigma\right) \Downarrow \sigma^{\prime}}
\end{aligned}
$$

SOS can choose an expression that loops, while NS will always choose to eliminate non-termination.

Ex: (x := 1) \quad (while true do skip)

Extension of While (3) : concurrency

Add a parallel composition to commands:

$$
c::=\ldots \mid\left(c_{1} \| c_{2}\right) .
$$

How can we extend the SOS semantics? The natural semantics?

